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Aged garlic extract and S‑allylcysteine 
prevent apoptotic cell death in a chemical 
hypoxia model
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Abstract 

Background:  Aged garlic extract (AGE) and its main constituent S-allylcysteine (SAC) are natural antioxidants with 
protective effects against cerebral ischemia or cancer, events that involve hypoxia stress. Cobalt chloride (CoCl2) has 
been used to mimic hypoxic conditions through the stabilization of the α subunit of hypoxia inducible factor (HIF-1α) 
and up-regulation of HIF-1α-dependent genes as well as activation of hypoxic conditions such as reactive oxygen 
species (ROS) generation, loss of mitochondrial membrane potential and apoptosis. The present study was designed 
to assess the effect of AGE and SAC on the CoCl2-chemical hypoxia model in PC12 cells.

Results:  We found that CoCl2 induced the stabilization of HIF-1α and its nuclear localization. CoCl2 produced ROS 
and apoptotic cell death that depended on hypoxia extent. The treatment with AGE and SAC decreased ROS and pro‑
tected against CoCl2-induced apoptotic cell death which depended on the CoCl2 concentration and incubation time. 
SAC or AGE decreased the number of cells in the early and late stages of apoptosis. Interestingly, this protective effect 
was associated with attenuation in HIF-1α stabilization, activity not previously reported for AGE and SAC.

Conclusions:  Obtained results show that AGE and SAC decreased apoptotic CoCl2-induced cell death. This protec‑
tion occurs by affecting the activity of HIF-1α and supports the use of these natural compounds as a therapeutic 
alternative for hypoxic conditions.
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Background
Hypoxia is a component of physiological events and mul-
tiple pathophysiological conditions, including neonatal 
hypoxia, cerebral ischemia, peripheral vascular disease, 
myocardial infarction, coronary heart disease and cancer 
[1, 2]. Hypoxic stress to cells alters gene expression regu-
lation, leading to subsequent recovery processes or cell 
death. Hypoxia-inducible factor 1 (HIF-1) is the master 

regulator of oxygen homeostasis, and adaptive cellular 
responses to reduced oxygen availability are primarily 
regulated by the stabilization/degradation ratio of the α 
subunit of the transcription factor HIF-1 [3–5].

Cobalt chloride (CoCl2) has been widely used to imi-
tate hypoxic conditions both in vivo [6, 7] and in vitro 
[8, 9]. CoCl2 mimics several aspects of the hypoxic 
response, such as increasing and stabilizing HIF-1α pro-
tein through inhibition of Prolyl Hydroxylases (PHDs) 
activity and producing reactive oxygen species (ROS), 
which leads to cell damage, decreased cell viability and 
apoptosis [9–11]. Previous studies have clearly shown 
that CoCl2-induced cell damage is associated with an 
increase in ROS that subsequently induces apoptosis. 
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Apoptotic morphology, DNA fragmentation, activation 
of caspases -3 and -9, loss of mitochondrial membrane 
potential, cytochrome c release, upregulation of Bax 
and down-regulation of Bcl2, [8, 9, 12–16] as well as 
p38MAPK activation [13] has been observed as result of 
CoCl2 induced damage.

The current study assessed the mechanism of action 
and protective effect of two antioxidant garlic derivatives, 
aged garlic extract (AGE) and S-allylcysteine (SAC), on 
hypoxia-induced damage.

AGE is the result of prolonged (20  months) garlic 
extraction in 20  % ethanol. This aging process con-
verts unstable and odorous compounds into odorless 
and stable forms [17, 18]. The most abundant organo-
sulfur compound in AGE is SAC (0.6  mg/g product); 
however, other AGE compounds, such as S-allylmer-
captocysteine, alliin, Nα-(1-deoxy-D-fructos-1-yl)-l-
arginine and tetrahydro-beta-carbolines, have been 
shown to inhibit oxidizing events and to scavenge free 
radicals and oxidant species such as hydroxyl radicals 
(•OH), superoxide anions (O2

•-) and hydrogen peroxide 
(H2O2). The evidence shows that AGE can ameliorate 
the oxidative damage implicated in aging and a variety 
of diseases, including cardiovascular alterations, can-
cer, stroke, Alzheimer’s disease, and other age-related 
degenerative conditions (reviewed in [19]). The protec-
tive effect of AGE in different models has been associ-
ated with its antioxidant properties [20–22], reviewed 
in [23].

SAC is the best characterized AGE compound. It is 
formed by γ-glutamyl-S-allylcysteine catabolism and has 
been used to standardize commercial AGE [24]. Previ-
ous studies have shown that SAC scavenges O2

•− [25], 
H2O2, •OH, peroxynitrite anions, hypochlorous acid, sin-
glet oxygen and peroxyl radicals [25, 26]. It also prevents 
H2O2-induced peroxidation and H2O2-induced activa-
tion of NFκB. SAC administration increases glutathione 
levels as well as catalase and glutathione peroxidase 
activities [19].

CoCl2-treated PC12 cells have been used to study 
the mechanisms underlying cell death due to hypoxia/
ischemia conditions because they are particularly sen-
sitive to hypoxic changes and reproduce apoptotic cell 
death [8, 9, 12–14]. We investigated the effect of AGE 
and SAC on cell death to determine the mechanisms 
behind CoCl2-induced injuries in PC12 cells. Our results 
showed that the protective effect of SAC and AGE was 
due to the preservation of cell viability and a decrease 
in cell death, particularly CoCl2-induced apoptosis. Our 
observations suggest that this increased cell survival 
occurs through the attenuation of HIF-1α stabilization 
and binding activity via the direct antioxidant effects of 
AGE and SAC.

Results
CoCl2 affects cell viability in a concentration‑ 
and time‑dependent manner
Concentration- and time-dependent changes in MTT 
reduction were used to assess CoCl2-induced effects. Cells 
were incubated for 24 or 48 h at increasing concentrations 
of CoCl2. Concentration- and time-dependent decreases 
in cell viability were observed. A significant reduction was 
observed at 0.5  mM CoCl2 for both time periods tested 
(Fig. 1a). The lowest cell viability percentage was observed 
after 24-h incubation with 1.0 mM CoCl2 (50 %). At 48 h, 
a 50  % MTT reduction was observed after exposure 
between 0.4 and 0.6  mM CoCl2. Representative bright 
field micrographs of cells at 0 (vehicle), 0.5 and 1.0  mM 
CoCl2 at 24 or 48 h are shown in Fig. 1b. Time-depend-
ent cell shrinkage and irregular shapes were found in cells 
treated with 0.5 and 1.0 mM CoCl2. These data are con-
sistent with the MTT reduction results.

CoCl2 stabilizes HIF‑1α and increases binding to hypoxia 
response elements (HRE) sequence
The binding of stabilized HIF-1α was determined using 
ELISA (Fig.  2). The binding of nuclear HIF-1α to HRE 
sequence was increased by approximately 6- and 4-fold 
after a 24-h exposure to 0.5 and 1.0 mM CoCl2, respec-
tively. CoCl2 incubation for 48  h induced further 
increases of 19- and 35-fold after exposure to 0.5 and 
1.0  mM CoCl2, respectively. No signal was detected in 
cells incubated with 0.15  mM CoCl2 for 30  min or 1  h 
(data not shown). Based on these results and the MTT 
data (Fig. 1), we used exposure to 0.5 and 1.0 mM CoCl2 
for 24 or 48 h for subsequent experiments.

SAC and AGE prevent CoCl2‑induced toxicity
To determine the effect of SAC and AGE on CoCl2-
induced toxicity, cells were co-incubated with SAC or 
AGE and CoCl2 for 24 or 48 h as stated in the experimen-
tal design. The level of MTT reduction was determined. 
Concentrations of 5 or 10 mM SAC and 0.5 or 1.0 % AGE 
were chosen based on previous in vitro reports (SAC: [27, 
28]; AGE: [29, 30]) and toxicity experiments using SAC 
(0–20  mM) or AGE (0–1  %) for 24 and 48  h (data not 
shown). After 24 h, 0.5 mM CoCl2 reduced cell viability 
to 60 %, and co-incubation with SAC (5 or 10 mM) com-
pletely restored cell viability (Fig. 3a). Similar results were 
obtained with AGE, including a partial increase in cell 
viability after treatment with 0.5 % AGE and almost com-
plete prevention with 1.0  % AGE after cells were incu-
bated with 0.5 mM CoCl2 (Fig. 3b). Neither SAC (Fig. 3a) 
nor AGE (Fig. 3b) exhibited a significant protective effect 
on the toxicity induced by 1.0  mM CoCl2. The toxicity 
induced by 0.5 mM or 1.0 mM CoCl2 for 48 h was clearly 
prevented by co-incubation with either SAC (Fig. 3c) or 
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AGE (Fig. 3d). Based on these results, subsequent experi-
ments were conducted using 10 mM SAC and 1 % AGE 
for 48 h.

SAC and AGE prevent cell death induced by CoCl2
To further investigate the effect of SAC and AGE on 
CoCl2-induced cell death, we monitored the cell cycle 
profile using fluorescence-activated cell sorting (FACS) 
analysis (Fig. 4). The fraction of cells in the Sub-G0 phase 
increased from 3 to 22  % after exposure to 0.5  mM 
CoCl2 for 48 h and 39 % after exposure to 1.0 mM CoCl2 

(compared to vehicle). Both SAC and AGE prevented this 
increase. Co-incubation with SAC and AGE reduced the 
0.5 mM CoCl2-induced cell death to 5 and 8 %, respec-
tively. Cells exposed to 1.0 mM CoCl2 and SAC or AGE 
showed a decrease in cell death from 39 to 17 and 20 %, 
respectively.

SAC and AGE prevent CoCl2‑induced apoptosis
The Annexin V/7-AAD staining in Fig.  5 shows the 
effect of CoCl2 and SAC or AGE on cell death. Repre-
sentative figures are shown in Fig. 5 (a–f ). The analy-
sis of six independent experiments is shown in Fig.  5 
(g–j). In agreement with the MTT reduction and 
Sub-G0 peak results, SAC and AGE prevented CoCl2- 
induced cell death. The known apoptosis inducer in 
PC12 cells staurosporine (200 nM) was used as a posi-
tive control (Additional file  1: Figure S1). The per-
centage of live cells at 0.5  mM CoCl2 was 22  %, and 
co-incubation with SAC or AGE increased cell viability 
to 50 %. Co-incubation of cells with 1.0 mM CoCl2 and 
SAC or AGE prevented cell death and increased the 
percentage of live cells from 8 to 30 and 40 %, respec-
tively (Fig.  5h). Single 7-AAD  +  cells were less than 
10  % for both CoCl2 concentrations (Fig.  5g). Early 
apoptotic cells (single Annexin +) increased from 15 % 
to approximately 50 % after exposure to 0.5 mM CoCl2. 
This increase was prevented by co-incubation with 
SAC (to 20 %) or AGE (to 25 %) (Fig. 5i). In addition, 
1.0  mM CoCl2 induced an increase in Annexin +/7-
AAD  +  cells from 15  % to approximately 60  %, and 
both SAC and AGE attenuated this effect to 35 and 
18 %, respectively (Fig. 5 j).

Fig. 1  Effect of CoCl2 on cell viability. Cells were incubated for 24 or 
48 h at increasing CoCl2 concentrations (0.1–1.0 mM). After incuba‑
tion, (a) the MTT reduction was determined, and (b) representative 
phase-contrast micrographs showing the effect of CoCl2 on cell mor‑
phology were taken. Data are shown as the mean ± S.E.M, n = 3–4. 
One-way ANOVA followed by Dunnett’s test. *p < 0.05 and **p < 0.01 
vs. 0 mM (control)

Fig. 2  Effect of CoCl2 on HIF-1α stabilization and binding activity. 
Cells were incubated for 24 or 48 h with 0.5 or 1.0 mM CoCl2. Bind‑
ing of nuclear HIF-1α to HRE sequences was determined using an 
ELISA. Data are shown as the mean ± S.E.M, n = 3. Two-way ANOVA 
followed by Bonferroni comparisons. *p < 0.05 and **p < 0.001 vs. 
vehicle at the same time point, #p < 0.001 vs. 0.5 mM CoCl2 at the 
same time point
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SAC and AGE decrease CoCl2‑induced ROS generation
In addition to the increase in HIF-1α protein stabiliza-
tion, CoCl2 mimics other hypoxia responses, including 
ROS generation. Figure  6a shows the increase in the 2’, 
7’dichlorofluorescein (DCF)-derived fluorescence of cells 
exposed for 1 h to 0.5 and 1.0 mM CoCl2 (vehicle bars). 
Co-incubation with 10 mM SAC or 1 % AGE decreased 
the ROS generated from exposure to both CoCl2 
concentrations.

SAC and AGE decrease CoCl2‑induced HIF‑1α stabilization 
and binding to HRE sequence
The effect of SAC and AGE on nuclear HIF-1α stabiliza-
tion and binding to HRE sequences was tested using an 
ELISA. A significant increase in the HIF-1α signal was 
observed at 0.5 and 1.0  mM CoCl2 (20- and 35-fold, 
respectively), and SAC and AGE prevented the increase 
in HIF-1α. Exposure to 0.5 mM CoCl2 decreased HIF-1α 
binding activity from 20-fold to 3-fold with SAC and 

7-fold with AGE. At 1.0  mM CoCl2, HIF-1α activity 
decreased from 35-fold to 13-fold and 19-fold with SAC 
or AGE, respectively (Fig. 6b).

Discussion
The cellular injury caused by hypoxia is involved in 
pathological events, such as cerebral ischemia, neona-
tal hypoxia and cancer. Thus, it is relevant to explore the 
mechanisms underlying the potential protective effects of 
compounds through hypoxia models.

The chemical hypoxia model induced by CoCl2 expo-
sure in PC12 cells is a useful in vitro model to elucidate 
the mechanisms behind hypoxia damage and test novel 
compounds because it reproduces many hypoxic condi-
tions, including ROS generation, mitochondrial mem-
brane potential changes, induction of apoptosis [12–16] 
and HIF-1α-regulated transcriptional responses [8, 9]. In 
this study, we observed that exposure to 0.5 and 1.0 mM 
CoCl2 for 24 or 48  h induced the stabilization and 

Fig. 3  Effect of SAC and AGE on CoCl2-induced toxicity in PC12 cells. Cells were co-incubated with CoCl2 and either SAC or AGE for 24 (a and b) 
or 48 h (c and d). Data are shown as the mean ± S.E.M. n = 4. Two-way ANOVA followed by Bonferroni comparisons. *p < 0.05, **p < 0.01 and 
***p < 0.001 vs. vehicle and #p < 0.05, ##p < 0.01 and ###p < 0.001 vs. the same concentration of CoCl2
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translocation of HIF-1α to the nucleus, confirming that 
CoCl2 can mimic hypoxia in PC12 cells [8, 15].

This study was designed to determine the effect of two 
garlic-derived antioxidants, AGE and SAC, in PC12 cells 
subjected to chemical hypoxia induced by CoCl2. We 
observed that co-incubation of AGE or SAC with CoCl2 
exerted a protective effect against the CoCl2-induced 
cell viability decrease. In the case of 1.0  mM CoCl2, it 
was clearly evident only after longer periods of exposure 
(48  h). Cell function was almost completely recovered 
for SAC or AGE co-incubation with 0.5  mM CoCl2 at 
both tested times. In contrast, 1.0 mM CoCl2 had a pro-
nounced toxicity effect that results in an apparent lack of 
protection at both SAC and AGE concentrations tested at 
24 h (Fig. 3a, b). Interestingly, a protective effect exerted 
by SAC and AGE was observed at 48 h, with a significant 
recovery of the cell viability at 1.0 mM CoCl2 (Fig. 3c, d). 
Noteworthy, about the same percentage of viable cells 
observed at 24 h with SAC and AGE treatment was main-
tained at 48 h. It suggests that both compounds retain cell 
viability along time. The marked decrease of cell viability 
in vehicle treated cells (48 h compared to 24 h) evidences 
this protective effect. SAC and AGE did not show a dose 
dependent effect, probably because the recovery of cell 
function at 5  mM SAC or 0.5  % AGE is the maximum 
recovery we could obtain for the 1.0 mM CoCl2-induced 
damage in PC12 cells. We suggest that protective mecha-
nisms of both SAC and AGE may depend on the severity 
of the stimulus, which could trigger different molecular 
responses, such as the differences observed in HIF-1α 
activity at both CoCl2 concentrations (Fig. 2).

The decrease in Sub-G0 values after treatment with 
SAC or AGE confirmed this protection. This technique 
allows quantification of the number of cells through 
DNA fragmentation. To differentiate early apoptotic 
cells, we performed flow cytometry with Annexin V/7-
AAD double staining. Sub-G0 results were corroborated 
by the Annexin V-7AAD assay, and a significant pres-
ervation of the number of live cells was observed after 
AGE or SAC treatment. Although this assay does not 
distinguish between late apoptotic and necrotic cells 
since both of them are Annexin and 7-AAD positive 
(Q2: Annexin  +/7-AAD  +), previous characterization 
of CoCl2-induced cell death strongly suggest that the 
cells in Q2 are mainly apoptotic. In addition, we used 
another well-known apoptotic inducer in PC12 cells 
(Additional file 1: Figure S1). As expected, and in accord-
ance to CoCl2 effect, cells are mainly distributed in Q2 
and Q3 in response to staurosporine 200  nM. Since we 
strictly cannot differentiate necrotic cells, we labeled Q2 
as late apoptotic and necrotic cells. Observed cell death 
depended on the CoCl2 concentration and incubation 
time; furthermore, SAC or AGE decreased the number of 
cells in early apoptosis as well as in late stages of apopto-
sis (plus possible necrotic cells).

AGE and SAC attenuated HIF-1α stabilization and 
binding to HRE sequences, suggesting a direct effect on 
the transcriptional activity of HIF-1α. Several reports 
suggest that ROS induces HIF-1α protein stabilization 
[31, 32]. It has been reported that ROS activates the 
HIF-1α promoter via a NFκB site, suggesting that these 
factors are important in disorders that show increased 
levels of ROS [33]; in addition, the effects of ROS on 
HIF-1α can also be affected by the degree of hypoxia, the 
form and intracellular location of ROS produced during 
hypoxia and the molecular microenvironment of the cell 
[34]. Under hypoxic conditions, mitochondrial complex 
III may produce ROS, and the presence of high ROS con-
centrations generated from the mitochondria has been 
shown to stabilize HIF-1α [35–38]. However, it has been 
suggested that mitochondrial-independent mechanisms 
are primarily responsible for CoCl2-induced ROS genera-
tion and the activation of HIF-1α [10, 11]. However, the 
generation of ROS could also be due to NADPH oxidases 
in the cytosol. Regardless, ROS influence HIF-1α activ-
ity. We observed that a decrease in activated HIF-1α cor-
relates with a decrease in CoCl2-induced ROS after SAC 
or AGE treatment. There are several hypotheses that can 
explain the stabilization of HIF-1α expression by ROS: 
1) Fe2+ oxidation by H2O2 affects PHDs activity; 2) pre-
vention of Fe3+ reduction by ascorbate; 3) prevention of 
ascorbate from binding to PHDs; 4) or a ROS-induced 
change in O2 availability that affects HIF binding to PHDs 
[34]. The concentrations of CoCl2 used in our study have 

Fig. 4  Effect of SAC or AGE co-incubation with CoCl2 on the Sub-G0 
peak. Cells were co-incubated with 10 mM SAC or 1 % AGE and 
0.5 or 1.0 mM CoCl2 for 48 h. Sub-G0 data were obtained using 
flow cytometry with cells incubated with PI. Data are shown as the 
mean ± S.E.M. n = 4–5. Two-way ANOVA followed by Bonferroni 
comparisons.*p < 0.01 and **p < 0.001 vs. control cells (vehicle), 
#p < 0.01 vs. the same concentration of CoCl2
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Fig. 5  Protective effect of SAC and AGE on CoCl2-induced apoptosis. Upper panel: Representative figures of Annexin and 7-AAD double staining assay 
using flow cytometry after 48-h incubation with CoCl2 and SAC or AGE (a–f). Percentage of 7-AAD + (g), live Annexin-/7AAD- (h), early apoptotic 
Annexin +/7AAD- (i) and late apoptotic plus necrotic cells Annexin +/7AAD + (j). Data are shown as the mean ± S.E.M. n = 6. Two-way ANOVA fol‑
lowed by Bonferroni comparisons. *p < 0.05, **p < 0.001 vs. control cells (vehicle), #p < 0.05, ##p < 0.01 vs. the same concentration of CoCl2
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been shown to induce oxidant stress in cells and oxidize 
intracellular ascorbate [39], confirming that ROS affects 
HIF-1α stability.

Thus, SAC and AGE prevent HIF-1α activation due 
to their antioxidant nature, which leads to a decrease in 
apoptotic cell death. The antioxidant effect of SAC and 
AGE on HIF-1α activity has not been described to date. 
A reduction in HIF-1α levels has also resulted in protec-
tion in other models [14, 39–41]. The reduction of cell 
death by blocking HIF-1α stabilization may be due to the 
inability of HIF-1α to induce the transcription of proap-
optotic members of the Bcl2 BH3-only family that induce 
oxidative death, such as BNIP3, PUMA and NOXA 
[42–44]. Hence, the prevention of apoptotic cell death by 
SAC and AGE can be explained by the abrogation of HIF-
mediated transactivation of BH3-only proteins [42].

In summary, we observed a protective effect of AGE 
and SAC on CoCl2 toxicity after CoCl2 exposure. The cell 

viability was preserved by AGE or SAC co-incubation. 
Flow cytometry showed that both garlic-derived antioxi-
dants decreased the number of dead cells and a decrease 
in early and late apoptotic cell death after AGE or SAC 
treatment, depending on the CoCl2 concentration and 
incubation time used. Both garlic derivatives decreased 
HIF-1α stabilization and nuclear translocation, suggest-
ing that their antioxidant role directly affects the tran-
scriptional activity of HIF-1α and subsequently blocks 
the transcription of prodeath HIF-1α regulated genes.

Conclusions
HIF modulation is an attractive strategy for the thera-
peutic intervention of pathological conditions affected 
by hypoxia and for the study of hypoxic mechanisms; 
however, fundamental studies are required before testing 
in clinical trials. We suggest that the use of SAC or AGE 
is a plausible strategy to minimize the prodeath effects 
of HIF-1α and the consequent cell death associated with 
hypoxia and oxidative stress conditions. However, fur-
ther research is necessary to elucidate the exact signaling 
pathways involved. The mechanisms behind apoptosis 
and its relationship with HIF-1α activity can be used to 
translate the full potential of AGE and SAC into a pre-
ventive strategy to counteract hypoxic consequences.

Methods
Materials
All reagents were analytical grade and commercially 
available. AGE Kyolic® was obtained from Wakunaga of 
America Co. (Ltd, Mission Viejo, CA, USA). This garlic 
extract complies with the specifications established in the 
US Pharmacopeia/National Formulary [24].

Synthesis of S‑allylcysteine (SAC)
SAC was synthesized by the reaction of l-cysteine with 
allyl bromide and purified by recrystallization from an 
ethanol–water solution. The final product was compared 
with a SAC standard using thin layer chromatography, 
high performance liquid chromatography, 1H nuclear 
magnetic resonance (NMR), infra-red and electronic 
ionization-mass spectroscopy (EI-MS). A detailed pro-
cedure for SAC synthesis, purification and identification 
of the final chemical compound are reported in [26]. 
The melting point of the SAC standard is 220–222  °C, 
and the melting point of the SAC used in this study was 
218–219 °C. The analysis of the final product by high per-
formance liquid chromatography showed one peak with a 
retention time of 12.38 min.

Cell culture
PC12 cells were obtained from the American Type Cul-
ture Collection (Rockville, MD, USA). Cells were routinely 

Fig. 6  SAC and AGE attenuates CoCl2-induced overproduction of 
ROS and HIF-1α stabilization and binding activity. a Cells were incu‑
bated with CoCl2 and SAC or AGE to determine intracellular ROS lev‑
els. Data are shown as the mean ± S.E.M. n = 6. *p < 0.001 vs. vehicle. 
#p < 0.05, ##p < 0.01 and ###p < 0.001 vs. the same concentration of 
CoCl2. b Binding of stabilized HIF-1α to HRE sequences was deter‑
mined using an ELISA. Data are shown as the mean ± S.E.M. n = 3. 
Two-way ANOVA followed by Bonferroni comparisons. *p < 0.001 vs. 
vehicle; #p < 0.001 vs. the same concentration of CoCl2
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cultured in Dulbecco’s modified Eagle’s Medium (DMEM) 
with 7.5  % heat-inactivated horse serum and 7.5  % fetal 
bovine serum at 37  °C in a humidified atmosphere of 
5 % CO2/95 % air [14]. Cells were seeded at a density of 
7.5 ×  104 cells/cm2. For experiments, confluent cultures 
were maintained in DMEM free of serum.

Experimental design
Cells were incubated for 24 or 48 h at 37 °C in one of the 
following conditions: vehicle (DMEM free of serum); SAC 
(5 or 10 mM); AGE (0.5 or 1.0 %); CoCl2 (0.5 or 1.0 mM); 
CoCl2 0.5  mM plus SAC (5 or 10  mM); CoCl2 1.0  mM 
plus SAC (5 or 10 mM); CoCl2 0.5 mM plus AGE (0.5 or 
1.0 %); or CoCl2 1.0 mM plus AGE (0.5 or 1.0 %). Cells 
were harvested and used to evaluate HIF-1α activation, 
cell viability and Sub-G0 levels using an enzyme-linked 
immunosorbent assay (ELISA), 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction 
assay and Annexin V/7-aminoactinomycin D (7-AAD) 
double staining with flow cytometry, respectively. Intra-
cellular ROS levels were determined using 2’,7’dichloro-
fluorescein diacetate (DCFH-DA) in cells incubated for 
1 h under the aforementioned conditions.

Cell viability assay
Cell viability was assessed using a MTT reduction assay 
as previously reported [14]. MTT (0.5  mg  ml−1) was 
added to each well, and cells were incubated at 37 °C for 
1.5 h. The formazan blue product was spectroscopically 
quantified at 570 nm. Data are expressed as the percent-
age of MTT reduction compared to control wells. The 
data were confirmed by bright field micrographs.

HIF‑1α activity assay
Cell nuclear fractions were obtained using a NE-PER® 
Nuclear and Cytoplasmic Extraction Reagents kit, 
(PIERCE, Thermo Scientific, Rockford, IL, USA), and the 
protein concentration was determined. Stabilized HIF-1α 
bound to the HRE sequence was determined using an 
ELISA-HIF-1α activity Transcription Factor Assay Kit 
(Cayman Chemical Co. Ann Arbor, MI, USA) accord-
ing to the manufacturer’s instructions. The results are 
expressed as OD 450 nm/µg protein.

Flow cytometry
Based on the methods of [45], FACS analysis was used 
to determine the Sub-G0 peak and the level of apoptosis 
after staining with propidium iodide (PI) or Annexin V 
and 7-AAD, respectively. A total of 10,000 events were 
evaluated, and data were collected on a FACSCalibur 
instrument (BD Biosciences, Franklin Lakes, NJ, USA). 
Data analysis was conducted using Cell QuestPro and 
Flow Jover 7.6.1 software.

Reactive oxygen species measurement
Intracellular ROS levels were determined by the oxidative 
conversion of DCFH-DA to DCF. PC12 cells were cul-
tured in 6-well plates. Cells were incubated for 1 h using 
the previously described treatment conditions. Cells 
were washed twice with PBS, and the 10 µM DCFH-DA 
in serum-free medium was added. Next, cells were incu-
bated for 30 min at 37 °C in the dark. Cells were washed 
twice with PBS, lysed in phosphate buffer (50  mM pH 
7.4, 1  % v/v Triton X-100) and centrifuged for 20  min 
at 12,000g. The fluorescence intensity was determined 
at excitation/emission wavelengths of 488  nm/515  nm. 
Micromoles of DCF were determined with a DCF cali-
bration curve.

Statistical analyses
Data are expressed as the mean ± S.E.M. and were ana-
lyzed using Prism 5 software (GraphPad, San Diego, CA, 
USA), applying analysis of variance (ANOVA) followed 
by the Bonferroni Multiple Comparison test or Dunnett’s 
test, as appropriate. A value of p < 0.05 was considered 
significant.
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