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Abstract 

Background:  Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute inflammatory 
lung injury as well as a major cause of acute respiratory failure. Although researchers have made significant progresses 
in elucidating the pathophysiology of this complex syndrome over the years, the absence of a universal detail disease 
mechanism up until now has led to a series of practical problems for a definitive treatment. This study aimed to pre-
dict some genes or pathways associated with sepsis-related ARDS based on a public microarray dataset and to further 
explore the molecular mechanism of ARDS.

Results:  A total of 122 up-regulated DEGs and 91 down-regulated differentially expressed genes (DEGs) were 
obtained. The up- and down-regulated DEGs were mainly involved in functions like mitotic cell cycle and pathway like 
cell cycle. Protein–protein interaction network of ARDS analysis revealed 20 hub genes including cyclin B1 (CCNB1), 
cyclin B2 (CCNB2) and topoisomerase II alpha (TOP2A). A total of seven transcription factors including forkhead box 
protein M1 (FOXM1) and 30 target genes were revealed in the transcription factor-target gene regulation network. 
Furthermore, co-cited genes including CCNB2-CCNB1 were revealed in literature mining for the relations ARDS related 
genes.

Conclusions:  Pathways like mitotic cell cycle were closed related with the development of ARDS. Genes including 
CCNB1, CCNB2 and TOP2A, as well as transcription factors like FOXM1 might be used as the novel gene therapy targets 
for sepsis related ARDS.

Keywords:  Acute respiratory distress syndrome, Sepsis, Differentially expressed mRNAs, Functional enrichment 
analysis, Pathway analysis, Transcription factors
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Background
Acute respiratory distress syndrome (ARDS) is a poten-
tially devastating form of acute inflammatory lung injury 
as well as a major cause of acute respiratory failure [1]. 
Its development leads to a high short-term mortality rate 
and significant long-term consequences among survi-
vors, such as physical and cognitive impairment [2]. This 

disease has represented an important and costly public 
health problem. The predisposing factors of ARDS are 
numerous and assorted, including sepsis, pneumonia, 
multiple blood transfusions, lung contusion, aspiration 
of stomach contents, and drug abuse or overdose [3]. 
Although researchers have made significant progresses 
in elucidating the pathophysiology of this complex syn-
drome over the years [4], the absence of a universal detail 
disease mechanism up until now has led to a series of 
practical problems for a definitive treatment [5].

Previous study has indicated that ARDS has a close 
relation with severe sepsis [6], but little is known about 
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the detail differences between sepsis-related and non-
sepsis-related ARDS. Clinical research reveals that sep-
sis-related ARDS has poorer recovery from lung injury, 
higher overall disease severity and higher mortality than 
non-sepsis-related ARDS [7], however, the mechanism 
leading to the development of ARDS is still unclear.

Over the past few years, considerable work has been 
done to test the contribution of genetic factors that may 
increase the risk of developing ARDS. A genome-wide 
association study by Wang et al. [8] have suggested that 
the BCL2-associated agonist of cell death (BAD) gene 
is a candidate gene associated with the development of 
ARDS. Besides, variants in more than 30 genes have been 
associated with ARDS [9]. For instance, common genetic 
variation in the angiopoietin-2 (Ang-2) gene is proved 
to be associated with increased risk of ARDS [10]. Gong 
et  al. [11] suggested that the mannose binding lectin-2 
(MBL-2) deficiency was associated with increased sus-
ceptibility to sepsis and ARDS. Additionally, based on 
the whole genome expression analysis, Kangelaris et  al. 
[12] believe that the exploration of gene expression dif-
ferences occurring early in the development of sepsis-
related ARDS may further reveal the mechanisms of 
ARDS. Furthermore, based on the gene expression pro-
filing on peripheral blood from ARDS patients, Dolinay 
et al. [13] found that the inflammasome pathway and its 
downstream cytokines play critical roles in ARDS devel-
opment; Wang et al. [14] found that peptidase inhibitor 3 
(PI3) may be a useful clinical marker for monitoring the 
early development of ARDS. Thus, the analysis of poten-
tial ARDS related genes and pathways based on gene 
expression profile may be a breakthrough for the further 
understanding of ARDS pathological mechanism.

In the present study, a bioinformatics analysis was per-
formed based on a previous mRNA expression profile 
from patients with sepsis or sepsis-related ARDS, which 
was provided by Kangelaris et  al. [12]. Via the investi-
gation of disease related differentially expressed genes 
(DEGs) and pathways, we tried to explore the mechanism 
of the ARDS and to provide valid biological information 
for further investigation of this devastating disease.

Methods
Affymetrix microarray data
The mRNA expression profile of GSE66890 provided 
by Kangelaris et  al. [12] was downloaded from a public 
functional genomics data repository Gene Expression 
Omnibus in National Center of Biotechnology Informa-
tion, based on the platform of GPL6244 [HuGene-1_0-st] 
Affymetrix Human Gene 1.0 ST Array [transcript (gene) 
version] (Affymetrix Inc., Santa Clara, California, USA). 
This profile included 29 whole blood mRNA samples of 

patients with sepsis-related ARDS, and 28 whole blood 
mRNA samples of patients with sepsis alone.

Differential expression analysis
The oligo software [15] in R was used to preprocess the 
gene expression profile data. The CEL source files were 
performed background correction, quartile data nor-
malization and calculating expression using robust multi-
array average (RMA) algorithm [16] in affy (http://www.
bioconductor.org/packages/release/bioc/html/affy.html). 
The DEGs between sepsis-related ARDS group and sepsis 
alone control group were analyzed using the limma pack-
age (available at http://www.bioconductor.org/packages/
release/bioc/html/limma.html) in Bioconductor soft-
ware [17]. The t test was used to identify the P value. fold 
change (FC) was calculated. P < 0.05 and |log2FC| ≥ 0.4 
were defined to be statistically significant.

Functional enrichment analysis
The database for annotation, visualization and integrated 
discovery (DAVID, http://david.abcc.ncifcrf.gov/) [18] is 
a gene functional classification tool that provides a com-
prehensive set of functional annotation tools for investi-
gators to understand biological meaning behind large list 
of genes. Gene Ontology (GO, http://www.geneontology.
org) [19] function enrichment analysis were performed 
based on DAVID, which includes three categories: 
molecular function (MF), biological process (BP) and 
cellular component (CC). Kyoto encyclopedia of genes 
and genomes (KEGG, http://www.genome.ad.jp/kegg/) 
[20] is a database of biological systems which collects the 
genomic, chemical and systemic functional information. 
Reactome (http://www.reactome.org) [21] is a free path-
way database that provides intuitive bioinformatics tool 
for basic research, genome analysis, modeling, systems 
biology and education. KEGG and Reactome pathway 
enrichment analyses were performed using DAVID as 
well. P value <0.05 was considered as threshold value for 
functional enrichment analyses.

Protein–protein interaction (PPI) network construction
Protein–protein interaction (PPI) network are central 
to most biological processes, which can help to uncover 
the generic organization principles of functional cellular 
networks [22]. Search tool for the retrieval of interact-
ing genes/proteins (STRING) [23] is a biological database 
and web resource of known and predicted protein–pro-
tein interactions. In this study, proteins associated with 
DEGs were selected according to STRING database with 
combined score >0.4, and then PPI network was visual-
ized using cytoscape (http://www.cytoscape.org/) [24]. 
Hub-proteins are small number of proteins with many 

http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://david.abcc.ncifcrf.gov/
http://www.geneontology.org
http://www.geneontology.org
http://www.genome.ad.jp/kegg/
http://www.reactome.org
http://www.cytoscape.org/


Page 3 of 9Wang et al. Biol Res  (2016) 49:25 

interaction partners, which play an important role in PPI 
network [25].

Furthermore, to describe the importance of nodes in 
the PPI network, three methods including degree cen-
trality [26], Betweenness centrality [27] and subgraph 
centrality [28] were introduced in the present study. 
The CytoNCA plugin [29] in cytoscape software was 
used for the calculation of three methods mentioned 
above. Furthermore, the modules in PPI network were 
explored using ClusterOne [30] in cytoscape software. P 
value <2.0E−7 was considered as threshold value for the 
analysis of modules.

Prediction analysis of transcription factors
To the further study the pathomechanism of ARDS, the 
analysis between transcription factors and their tar-
get genes obtained from PPI network was performed. 
IRegulon plugin [31] in cytoscape is used to detect tran-
scription factors, motifs and their optimal sets of direct 
targets from a set of genes. In this study, iRegulon was 
used to analyze the transcription factors and their related 
target genes. The minimum identity between orthologous 
genes was 0.05, while the maximum false discovery rate 
on motif similarity was 0.001. The normalized enrich-
ment score (NES) >5 was considered as threshold value 
for the selection of potential relationships.

Literature mining analysis of ARDS related genes
GenCLiP software (version 2.0, http://ci.smu.edu.cn/
GenCLiP2.0/confirm_keywords.php) [32] is used to 
perform literature mining analysis for human genes and 
networks. In GenCLiP, the module of literature mining 
gene networks [32] can construct a gene-network for the 
input genes and generate sub-networks based on the user 
defined query terms, at the same time calculate the prob-
ability of random occurrence of the networks through 
random simulation. In the present study, the literature 
mining gene networks module in GenCLiP was used to 
analyze the co-cited network of the ARDS-related genes 
in the previous studies, and the input genes came from 
the key genes in the PPI network.

Resutls
Identification of DEGs
With thresholds of p value  <0.05 and |log2FC| ≥  0.4, a 
total of 122 up-regulated and 91 down-regulated DEGs 
were obtained in sepsis with ARDS group compared with 
sepsis group. The heat map of differentially expressed 
mRNAs was showed in Fig. 1.

Functional enrichment analysis
GO functional enrichment analysis showed that the up-
regulated DEGs were mainly involved in mitotic cell 

cycle (BP, GO: 0000278), cytoplasm (CC, GO: 0005737) 
and enzyme binding (MF, GO: 0019899). The down-reg-
ulated DEGs were mainly involved in positive regulation 
of response to stimulus (BP, GO: 0048584), spindle (CC, 
GO: 0005819) and signaling pattern recognition receptor 
activity (MF, GO: 0008329) (Table 1).

The results of pathways enrichment analysis were 
listed in Table  2. KEGG pathway analysis showed that 
the up-regulated DEGs were mainly enriched in path-
ways like Cell cycle, and Hematopoietic cell lineage. The 
down-regulated DEGs were enriched in three pathways, 
including phagosome, cytosolic DNA-sensing path-
way, and hematopoietic cell lineage. Reactome path-
way analysis showed that the up-regulated DEGs were 
mainly enriched in pathways like mitotic prometaphase, 
and cell cycle, mitotic; the down-regulated DEGs were 
enriched in pathways like hydroxycarboxylic acid-
binding receptors, innate immune System, and immune 
system.

PPI network analysis
With combined score >0.4, a total of 132 nodes with 290 
protein interaction pairs were revealed. The PPI network 
was constructed based on the protein interaction pairs 
(Fig. 2). Top 20 genes (hub genes) with higher combined 
score that respectively evaluated by subgraph centrality, 
betweenness centrality and degree centrality were listed 
in Table  3. The results showed that cyclin B2 (CCNB2) 
had the highest combined score based on the subgraph 
centrality evaluation. Meanwhile, the topoisomerase II 
alpha (TOP2A) had the highest combined score in both 
betweenness and degree centrality evaluations. Further-
more, a sub-network module was obtained from the PPI 
network (Fig.  3). The result showed that there were 24 
genes in the sub-network module, all of which were up-
regulated. Interestingly, among the 24 genes, 20 could be 
found in Table 3.

Transcription factor‑target gene regulatory network 
analysis
The transcription factors of the top 35 genes with higher 
scores in Table 3 were predicted. With NES >4, a total of 
seven transcription factors [such as forkhead box protein 
M1 (FOXM1)] and 30 target genes [such as hyaluronan-
mediated motility receptor (HMMR)] were revealed in 
the present regulatory network (Fig. 4).

Literature mining analysis
The result of literature mining analysis revealed 14 genes 
that were revealed as the key ARDS related genes (Fig. 5). 
All these genes were differentially expressed in the pre-
sent study. CCNB1 and CCNB2 had the highest co-cited 
times.

http://ci.smu.edu.cn/GenCLiP2.0/confirm_keywords.php
http://ci.smu.edu.cn/GenCLiP2.0/confirm_keywords.php
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Discussion
Although intensively and continuously studies have 
been conducted in ARDS, its mortality is still as high as 
30–40 % [33]. In the present study, a bioinformatics anal-
ysis between sepsis-related ARDS mRNA samples and 
human sepsis mRNA samples was performed to explore 
the mechanism of the ARDS. A total of 122 up-regulated 
and 91 down-regulated DEGs were obtained. The up- 
and down-regulated differentially expressed mRNAs 
were mainly involved in functions like mitotic cell cycle 

and pathway like cell cycle. PPI network of ARDS analy-
sis revealed 20 hub genes such as CCNB1, CCNB2 and 
TOP2A. In addition, seven transcription factors were 
revealed in the transcription factor-target gene regula-
tion network. Furthermore, 14 co-cited genes including 
CCNB2–CCNB1 were revealed in literature mining anal-
ysis. These findings may contribute to understanding the 
development of sepsis-related ARDS.

In the present study, GO functional analysis showed 
that the up-regulated DEGs, such as CCNB1, CCNB2 and 

Fig. 1  Heat map for the differentially expressed genes (DEGs). Green represents the low expression level of DEGs; red represents the high expression 
level of DEGs; blank represents the express is not significant
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TOP2A, were most significantly assembled in BP related 
to mitotic cell cycle (GO: 0000278, P  =  1.70E−09) 
(Table  1). Meanwhile, KEGG analysis also showed that 
the most significant pathway enriched by up-regulated 
DEGs was cell cycle (04110, count  =  5, P  =  0.0035) 
(Table  2). Study has reported that errors in mitosis can 
either kill a cell through apoptosis or cause mutations 
which may lead to disease [34]. Therefore, we speculated 
that some key factors might play important roles in the 
development of ARDS via taking part in mitosis cell cycle. 
When and how did these DEGs regulate the process of 
ARDS? The Reactome pathways analysis showed that 
mitotic prometaphase (68877, count = 8, P = 4.95E−06) 
(Table  2) was the most significant pathway enriched by 

the DEGs. GO analysis showed that both the up- and 
down-regulated DEGs were assembled in same function 
like spindle (GO: 0005819). Thus, we speculated that 
the DEGs might involve in the progression of ARDS via 
interfering the progress of spindle in premetaphase of 
mitotic. However, a further investigation is needed to 
clarify this speculation.

In this study, CCNB1 and CCNB2 were two outstand-
ing ARDS-related genes based on the calculation of 
subgraph centrality in PPI network. Furthermore, the 
literature mining analyses showed that CCNB2–CCNB1 
had the highest co-cited times. As a mitotic cyclin, cyc-
lin B is necessary for the progression of the cells into 
and out of M phase of the cell cycle [35]. An abnormal 

Table 1  Results of  gene ontology functional enrichment analysis of  differentially expressed genes in  acute respiratory 
distress syndrome (ARDS) (Top 12 listed)

P value <0.05 was considered as threshold values of significant difference

BP biological process, MF molecular function, CC cellular component, GO gene ontology

GO ID Term Count P value

BP Up-regulate GO:0000278 Mitotic cell cycle 26 1.70E−09

GO:1903047 Mitotic cell cycle process 24 2.05E−09

Down-regulate GO:0048584 Positive regulation of response to stimulus 20 1.31E−05

GO:0033029 Regulation of neutrophil apoptotic process 2 4.80E−05

CC Up-regulate GO:0005737 Cytoplasm 89 5.94E−07

GO:0005819 Spindle 11 1.56E−06

Down-regulate GO:0005819 Spindle 5 0.0055

GO:0005829 Cytosol 20 0.0092

MF Up-regulate GO:0019899 Enzyme binding 26 4.22E−06

GO:0019900 Kinase binding 12 0.000143101

Down-regulate GO:0008329 Signaling pattern recognition receptor activity 2 0.002

GO:0038187 Pattern recognition receptor activity 2 0.002

Table 2  Results of KEGG (Kyoto encyclopedia of genes and genomes) and reactome pathway enrichment analysis of dif-
ferentially expressed genes in acute respiratory distress syndrome ARDS (top 12 listed)

P value <0.05 was considered as threshold values of significant difference

ID Term Count P value

KEGG Up-regulate 04110 Cell cycle 5 0.0035

04640 Hematopoietic cell lineage 4 0.006

04114 Oocyte meiosis 4 0.0138

Down-regulate 04145 Phagosome 4 0.0031

04623 Cytosolic DNA-sensing pathway 2 0.0216

04640 Hematopoietic cell lineage 2 0.0496

Reactome Up-regulate 68877 Mitotic prometaphase 8 4.95E−06

69278 Cell cycle, mitotic 15 6.51E−06

2500257 Resolution of sister chromatid cohesion 7 2.81E−05

Down-regulate 3296197 Hydroxycarboxylic acid-binding receptors 2 6.93E−05

168249 Innate immune system 10 0.0003

168256 Immune system 12 0.0011
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Fig. 2  Protein-protein interaction network investigation. Red represents the up-regulated gene; Green represents the down-regulated gene

Table 3  Top 20 genes that evaluated by subgraph centrality, betweenness centrality and degree centrality respectively 
in the protein–protein interaction (PPI) network

Combined score >0.4 was considered as threshold values of significant difference

Gene name Subgraph centrality Gene name Betweenness centrality Gene name Degree centrality

CCNB2 92,020.02 TOP2A 4238.0317 TOP2A 29

CCNB1 91,113.23 HMMR 2151.6792 CCNB1 26

TOP2A 86,794.31 CCNB1 2114.8433 CCNB2 24

BUB1 85,489.84 VCAN 1703.794 BUB1 20

KIF11 72,242.97 BIRC5 1687.0967 BIRC5 20

BIRC5 65,156.9 TFRC 1503.5779 KIF11 18

CENPF 57,783.895 LRRK2 1472.6691 CENPF 15

NUSAP1 57,466.84 TYMS 977.0087 NUSAP1 15

DLGAP5 53,906.652 SPTA1 971.715 DLGAP5 15

NUF2 47,763.83 FLT3 961.2316 NUF2 13

PRC1 46,547.062 MPP7 923.03656 PRC1 13

NCAPG 43,847.594 MME 917.51965 NCAPG 13

CKS2 37,598.816 PNP 807.13245 RRM2 13

CEP55 34,042.55 TFPI 783.21027 CKS2 12

RRM2 32,993.395 RAD23A 767.7287 CEP55 11

TPX2 23,101.832 TUBB1 708.9906 TPX2 9

TYMS 18,167.875 MMP8 698.92865 TYMS 9

CDKN3 14,048.942 CCNB2 688.69775 TFRC 9

KIF14 11,749.522 DDB1 606.85 CDKN3 8

ASPM 11,499.243 LTF 585.95557 ASPM 8
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cytoplasmic cyclin B1 expression has been found to 
be associated with a specific T-cell response and cyclin 
B1-specific immune responses [36]. Importantly, increas-
ing evidences indicate that the immune system plays a 
key role in lung diseases, including acute lung injury [37]. 
Activation of the innate immune response by binding 
of cell injury-associated endogenous molecules to pat-
tern recognition receptors such as the Toll-like recep-
tors on the lung epithelium and alveolar macrophages is 
now recognized as a potent driving force for ARDS [1]. 

Taken together, although there is no direct evidence that 
CCNB1 and CCNB2 are involved in ARDS, we speculated 
that CCNB1 and CCNB1 might have close relations in the 
development of ARDS.

Furthermore, TOP2A was also a hub gene had the high-
est score in betweenness centrality and degree central-
ity. TOP2A encodes a DNA topoisomerase that controls 
and alters the topologic states of DNA during transcrip-
tion. Actually, the enzyme of TOP2A gene is an essential 
nuclear enzyme involved in processes such as chromo-
some condensation and chromatid separation during 
DNA transcription and replication [38]. Recent study 
reported that its encoding protein TOP2α is responsible 
for causing genomic DNA damage [39]. Interestingly, 
DNA damage is implicated in diverse pulmonary dis-
orders, including acute lung injury [40]. Therefore, we 
speculated that the up-regulation of TOP2A in our study 
might have a potential relation in the development of 
ARDS.

The transcription factor-target gene regulation net-
work analysis in this study revealed seven transcription 
factors including FOXM1. FOXM1 regulates the expres-
sion of a large array of G2/M-specific genes including 
CCNB2, and plays an important role in maintenance of 
chromosomal segregation and genomic stability [41]. In 
this study, HMMR was a target gene of FOXM1. HMMR 
(also identified as CD168) was originally discovered as a 
soluble protein that altered migratory cell behavior and 
bound to hyaluronan [42]. HMMR is less well studied 

Fig. 3  Sub-network module extracted from protein–protein interac-
tion network. Red represents the up-regulated gene

Fig. 4  Regulatory network for transcription factors and target genes. Green circle represents the down-regulated genes; Red circle represents the 
up-regulated genes; Blue square represents the transcription factors



Page 8 of 9Wang et al. Biol Res  (2016) 49:25 

than the main hyaluronan receptor of CD44 that has 
been examined in ARDS secondary to bleomycin injury. 
Priit et al. [43] have suggested that CD44 plays a role in 
resolving lung inflammation during the process of ARDS. 
Although the role of HMMR (CD168) in ARDS has not 
been studied before, we speculate that HMMR may be 
related with the progress of ARDS.

Despite of the results obtained above, there were some 
limitations in this study. Firstly, no verification experi-
ments based on cells or tissues or joint analysis of expres-
sion profile data were performed to confirm our results, 
besides, the sample size was small. Secondly, due to 
the data themselves, there was no correction for mul-
tiple comparisons in the DEGs identification. Thirdly, 
the mRNA expression profile used in this study was 
extracted from blood leukocytes, and another important 
cells in ARDS, such as epithelial and endothelial cells of 
the lung had not been studied. Therefore, more investiga-
tions related to another cells in ARDS with experimental 
verification and diverse samples are needed in the further 
study.

Conclusions
In conclusion, the pathways like mitotic cell cycle were 
closed related with the development of sepsis related 
ARDS. Genes including CCNB1, CCNB2 and TOP2A, as 
well as transcription factors FOXM1 may be used as the 
novel gene therapy targets for ARDS.
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