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Abstract 

Increased levels of greenhouse gases in the atmosphere and associated climatic variability is primarily responsible for 
inducing heat waves, flooding and drought stress. Among these, water scarcity is a major limitation to crop productiv-
ity. Water stress can severely reduce crop yield and both the severity and duration of the stress are critical. Water avail-
ability is a key driver for sustainable cotton production and its limitations can adversely affect physiological and bio-
chemical processes of plants, leading towards lint yield reduction. Adaptation of crop husbandry techniques suitable 
for cotton crop requires a sound understanding of environmental factors, influencing cotton lint yield and fiber qual-
ity. Various defense mechanisms e.g. maintenance of membrane stability, carbon fixation rate, hormone regulation, 
generation of antioxidants and induction of stress proteins have been found play a vital role in plant survival under 
moisture stress. Plant molecular breeding plays a functional role to ascertain superior genes for important traits and 
can offer breeder ready markers for developing ideotypes. This review highlights drought-induced damage to cotton 
plants at structural, physiological and molecular levels. It also discusses the opportunities for increasing drought toler-
ance in cotton either through modern gene editing technology like clustered regularly interspaced short palindromic 
repeat (CRISPR/Cas9), zinc finger nuclease, molecular breeding as well as through crop management, such as use of 
appropriate fertilization, growth regulator application and soil amendments.
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Introduction
Recent climate change investigation has reported that 
global escalation of storms, flooding and other severe 
weather episodes with growing temperatures may ulti-
mately disrupt crop production [1]. Global circulation 
models projected an increase of 4–5.8  °C in the surface 
air temperatures over the next few decades. From 1979 
to 2003, an increase of 0.35 and 1.13  °C have already 
documented in the annual mean maximum and mini-
mum temperatures respectively, at the International Rice 
Research Institute, Manila, Philippines [2–6]. These tem-
perature increases have likely exposed crops globally to 
drought induced stress [7–15]. Tackled with shortage of 
water reserves, drought is the single most serious risk to 
world food safety. Drought severity is unpredictable as it 
depends on several factors, for instance rainfall amount 
and distribution, evaporative demands and moisture 
storing ability of soils [16–19]. Uncertainties in weather 
conditions can result in decreased rainfall coupled with 
increased evapotranspiration. These occurrences can 
lead to drought and substantial reductions in cotton 
yield. Over the las 50  years, drought stress alone was 
responsible for approximately 67% of the cotton lint yield 
losses in USA, one of the top cotton producing countries 
in the world [20].

Cotton crop is very sensitive to cold, soil salinity, heat 
and drought stress [21]. For instance, episodic drought 
events can cause severe lint yield penalty and may 
become a significant challenge for sustainable crop pro-
duction [22]. On the contrary, even a small but adequately 
timed irrigation can significantly improve water-stressed 
crop [23, 24]. Drought-induced lint yield penalties in cot-
ton may vary from 50 to 73% [25]. In dry the regions, 
accounting that 30–60% of total irrigation water supplied 
to the soil is lost through evaporation which may cause 
drought [26]. Crops producing areas are already facing 
a continuous decline of irrigation water [27], and hence, 
there is a need to establish and design policies to protect 
crops from extreme weather events [28]. One of the most 
commonly used strategy, is breeding of stress-tolerant 
crop for any water-scarce based calamity.

Yield improvement and yield stability under both nor-
mal and moisture stress environment is essential for 
cotton crops. Tolerance to drought stress in cotton is a 
complex trait that depends on various environmental 
and physiological factors. Therefore, a sound under-
standing of the plant morpho-physiological, molecular 
and biochemical mechanisms, responses to water deficit 
may provide a means to identify and confer tolerance in 
terms of agronomic, molecular, and genetic aspects. The 
adaptive strategies used by drought tolerant plants are of 
major importance for improving performance of cotton 
crop under erratic water deficit conditions.

For instance, improvements in production systems and 
breeding programs have substantially increased cotton 
lint yield. These published literature will enable the devel-
opment of crop plants better able to tolerate and thrive 
under future climatic conditions and so maintain pro-
duction potential. To our knowledge, no such compre-
hensive and accumulative data are available to elucidate 
biochemical, morphological, physiological and molecular 
adaptive mechanisms of cotton to harsh environment, 
particularly drought.

Structural and physiological responses to drought
Drought results in a wide range of variations at the 
developmental and functional level of cotton plants. For 
example, drought severely impedes various physiological 
processes, which regulate lint production and fiber qual-
ity [29].

Drought resistance mechanisms in plants are com-
posed of four categories: recovery, avoidance, tolerance 
and drought escape [30]. Water stress avoidance is the 
sustaining of important physiological processes such 
as stomatal regulation, when exposed to mild drought. 
Drought tolerance is the ability of flora to endure severe 
dehydration via osmotic adjustment and osmo-protect-
ants [31]. Plants are evolved to regulate growth period 
to avoid moisture stress; termed as drought escape [32]. 
Drought recovery is the ability of plants to continue 
growth after drought injury. In cotton, biochemical, 
physiological and molecular strategies against drought 
stress are reviewed in the proceeding sections.

Root growth
Plant roots are crucial for sensing and responding to vari-
ous external environmental stimuli due to direct contact 
with soil water and nutrients. Due to difficulty in collect-
ing root structural configuration from dry soils, limited 
data are available on modification in root systems under 
drought and most of the studies are conducted on cereal 
crops. Plant roots respond to the variation in surface soil 
moisture e.g. water deficit in the upper soil profile leads 
to deeper root penetration, while excess water in the 
upper layer reduces root penetration [33], i.e. up to 3 m.

Root growth rates are commonly employed for esti-
mating crop yield losses in cotton crop. Insufficient soil 
moisture restricts root growth and development and 
consequently impairs functioning of the aerial parts [33]. 
Water deficit in the upper soil profile leads to deeper 
root penetration for greater exploration of moisture and 
nutrients, while excess of water in the upper layer causes 
reduced root penetration [33]. Drought reduces above-
ground biomass accumulation by decreasing root volume 
density, root mass density and root length density [34]. 
These root traits are crucial in the process of tolerance to 
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drought; however, traits such as hydraulic conductance 
and plant allometry are of great interest to scientists. 
Rooting system with large number of short and slender 
lateral roots permits a larger root surface sorption zone 
than the scattered-type root system in acquiring oxygen 
and nutrients from soil [22]. Fine root system drives soil 
processes like carbon cycling and sequestration, nutri-
ent fluxes, structural stabilization and the activity of soil 
microorganisms [35]. In soil, higher root length, and 
proliferation in the soil are desirable traits for drought 
adaptation. However, plant root growth and penetration 
depend on external oxygen partial pressure in the root 
zone [36]. Mild drought stress during the initial stage 
may enhance root elongation but root morphological 
and physiological activities are seriously hampered under 
long term water stress hampers [37]. In conclusion, 
deeper root penetration allows the plant to get greater 
exploration of deeper soil for water and nutrients. There-
fore, it is essential to enhance vertical root distribution 
to enhance crop growth and development under drought 
stress.

Cotton lint yield
Lint yield in cotton crops is a complex integration of 
the various physiological processes; most of which are 
adversely impacted by water stress. Due to indetermi-
nate growth habit, production of new nodes in a cotton 
plant depends on water availability. The adverse effects of 
moisture stress on the yield are associated with the dura-
tion and severity of the stress and plant growth stage. 
Terminal drought substantially limits cotton yield pro-
duction by inhibiting carbon assimilation, and biomass 
accumulation [38]. Inhibited carbohydrate production 
coupled with depletion of stored reserves (i.e. starch) 
due to continuous respiration [39] reduce translocation 
of assimilates to reproductive organs [40]. This conse-
quently induces abscission of reproductive structures 
and boll size reduction [41]. Accelerated abscission of 
fruits and leaves in drought-stressed cotton crop could be 
associated with final yield reduction [42]. In brief, cotton 
yield reduction is directly associated with plant morpho-
logical and physiological processes under drought stress.

Fiber quality
Fiber quality is a main aim of cotton breeders both 
because fiber traits directly affect lint yield and improve-
ment in spinning technology has an increased demand 
for high-grade fiber [43]. Fiber quality is the combination 
of fiber length, fiber fineness (cell wall thickness), fiber 
strength, fiber elasticity, neps (small nodules on the fiber), 
short fiber index, uniformity index, spinning consistency 
(suitability of fibers for yarn-spinning), color grade, and 
reflectance (brightness of fibers) [44]. Fiber quality traits 

are quantitative and controlled by multiple genes with 
major and minor phenotypic effects [45]. Water supply 
during fiber cell development has a direct impact on lint 
quality [46]. As drought tolerance in plants is a complex 
phenomenon, associated with a variety of morphological 
and physiological traits [47], breeding for improved fiber 
quality traits under moisture stress is cumbersome [48]. 
Hence, the identification of stable quantitative trait loci 
(QTL) for irrigated and water deficit environment could 
facilitate molecular breeding of cotton genotypes with 
both improved fiber quality and yield attributes. QTL, 
genetic diversity and structure analysis, require the avail-
ability of abundant DNA markers which are continually 
being developed for the cotton genome [49]. In upland 
cotton, several QTL analyses have focused on lint yield 
traits [50, 51], but less attention have been paid to iden-
tify QTLs for fiber quality under drought [52]. Saranga 
et  al. [53], used inter-specific F2 and F3 cotton plants 
derived from a cross between inbred lines of G. hirsu-
tum cv Siv’on and G. barbadense cv F-177. QTLs (13 and 
33) under well-watered and water deficit conditions and 
reported for 16 QTL trait including plant productivity, 
physiology and fiber quality. Paterson et  al. [54] identi-
fied 79 QTLs allied with fiber quality traits in F2 and F3 
generations derived from G. hirsutum cv Siv’on and G. 
barbadense cv F-177 under irrigated and deficit water 
conditions. Seventeen of the identified 79 QTLs were 
specific to moisture stress conditions, whereas only two 
were specific to well-watered conditions. Saeed et al. [52] 
mapped physiological, yield and plant structure traits in 
an F2 population generated from a cross between G. hir-
sutum cv. FH-901 (drought sensitive) and G. hirsutum cv. 
RH-510 (drought tolerant). A total of seven QTLs were 
detected of which three and two QTLs were specific to 
water-limited and well-watered conditions, respectively. 
Such QTL analysis of germplasm panels, which contain 
G. hirsutum lines with diverse genetic information have 
the capacity to detect a broader array of useful alleles. 
In the present study, 177 simple sequence repeat (SSR) 
markers were used to detect significant quantitative trait 
loci (QTLs) linked to 11 fiber quality and plant struc-
tural traits in a panel of 99 upland cotton genotypes. In 
another study, fiber quality and plant structural traits 
were tested under well-watered and water deficit condi-
tions. Analysis of GLM showed that a total of 74 and 70 
QTLs under well-watered and limited water conditions 
were identified, respectively. MLM identified 7 and 23 
QTLs under well-water and water deficit, respectively 
[44].

For instance, for traits of important interest in cotton 
fibre, efforts have been made to detect the specific fiber 
associated gene and their functions for improved fiber 
quality i.e. E6 [55], GhExp1 [56], GhSusA1 [57], PIP2s 
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[58] and GA20ox [59]. Cotton functional genomics 
promise to enhance the understanding of fundamental 
plant biology to systematically exploit genetic resources 
for improvement of cotton fiber quality. However, deter-
mining the functions of cotton genes is cumbersome, 
which has not been fully assessed a rapid pace [60]. Actin 
cytoskeleton [61], polysaccharide biosynthesis, signal 
transduction and protein translocation [62] associated 
genes are expressed in different fiber developmental 
pathways. Among these genes, few are predominantly 
expressed during fiber formation [63], secondary cell 
wall biosynthesis [64], and fiber elongation [65]. Cur-
rently, a cotton protodermal factor 1 gene (GbPDF1) was 
expressed at fiber initiation stage through HDZIP2A-
TATHB2 core cis-element [66]. While, alpha-expansins 
(GhExp1) gene had been expressed in developing fib-
ers and encodes a cell wall protein and controls cell wall 
loosening [56]. Ruan et  al. [67] showed that antisense 
suppression of a sucrose synthase (SuSy) gene inter-
rupted the fiber elongation and signified the contribution 
of SuSy in osmosis regulation. Conversely, proline-rich 
proteins coding gene (GhPRP5) performed as a nega-
tive regulator during fiber development [68]. Cellulose 
synthesis is a central event in fiber cells development 
during the secondary cell wall biosynthesis. Many stud-
ies have been done to investigate that how cotton fiber 
regulates and supports the strong irreversible carbon 
sink characterized by secondary wall cellulose synthesis 
[64]. Subsequently, a new Sus isoform (SusC) was discov-
ered, which was up-regulated during secondary wall cel-
lulose formation in the fiber [64]. At fiber maturity, most 
of the expressed genes were linked to cellular respira-
tion [69]. Many genes encoding transcription factors i.e. 
MYB, C2H2, bHLH, WRKY and HD-ZIP families have 
also been expressed during the fiber developmental stage. 
Past studies indicated that MYB-related genes showed 
high expression during fiber development in upland cot-
ton [70]. Expression studies of six MYB-associated genes 
revealed that GhMYB6 has high expression in fiber [71], 
while R2R3 MYB-like transcription factor encoding gene 
“GhMYB109” was expressed during fiber elongation and 
initiation [72]. In the cotton ovule, at fiber initiation the 
RAD-like GbRL1 is highly expressed [73].

Identification of markers connected to loci for fiber 
quality under moisture stress can have useful effects in 
genetic adaptability required to generate necessary fiber 
under limited water conditions. Numerous gene expres-
sion investigations had been performed to understand 
on cotton fiber development which present some issues. 
Firstly, majority of differentially expressed genes known 
by the comparative analysis are linked to difference 
between species instead of allied with fiber characteris-
tics. Secondly, the application of the protein coding gene 

sequences from G. raimondii and G. arboreum may not 
be accurate enough for gene annotation in tetraploid cot-
ton. Thirdly, it is unfamiliar if any of the expressed genes 
identified from earlier studies had sequence changes 
between a cotton fiber mutant and its wild-type. Herein, 
only the differentially expressed genes having sequence 
variations and co-localization with target fiber charac-
teristics are potential candidates for innovative cotton 
research.

Photosynthesis
Photosynthesis is the main driver for crop productiv-
ity, which is negatively influenced by water deficit con-
ditions. Stomata closing in response to moisture stress 
results in a reduction in leaf photosynthetic capacity 
resulting in chloroplast dehydration and decreased CO2 
diffusion into the leaf (Fig.  1). For instance, mild mois-
ture stress stimulates stomata closure to reduce water 
loss by regulating transpiration. This reduces stomatal 
conductance and limits intercellular CO2 concentration 
[74]. Under severe drought, reduced stomatal conduct-
ance and metabolic (non-stomatal) damage like limited 
carboxylation becomes major limitations to photosynthe-
sis [75]. Similarly, stomatal conductance is not constantly 
allied with photosynthesis, although it needs to be inves-
tigated [76, 77]. Drought can reduce photosynthesis as 
well as severely affect transpiration rate and the process 
depends on the intensity of drought and plant develop-
mental stage [78]. Up to 66% reduction in photosynthe-
sis was noted in mature cotton leaves compared with 
younger leaves under water deficit conditions [79].

Stomata regulation
In plants, the main role of stomata is to regulate water 
loss through transpiration. Under moisture stress, inter-
nal moisture preservation and quick stomatal closure 
are vital for plant withstand to water deficit conditions. 
Water loss from cotton leaves is a key phenomenon under 
water deficit conditions but plants use morphological 
adaptation to survive under drought stress i.e. leaves wilt-
ing and rolling leading to less radiation interception, and 
ultimately decreased water loss [30]. Plants usually show 
numerous xeromorphic traits and structures that induce 
drought resistance, i.e. a thick cuticle epidermis, thicker 
and tiny leaves, smaller and denser stomata, palisade tis-
sues more epidermal trichomes, and a well-structured 
vascular bundle sheath [80]. Stomatal regulation plays an 
imperative role in leaf gas exchange between the intracel-
lular cavity of the leaf and external environment. Plant 
leaves dissipate heat energy through three means. These 
mechanisms are re-radiation, sensible heat loss (conduc-
tion and convection) and transpiration. Of these, transpi-
ration is the most important mechanism that sanctions 
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plants to harvest energy and sustain cellular functions. 
As 90% of water loss from plants occurs though stomata 
openings via transpiration [81], stomatal regulation plays 
a key role in maintaining water and nutrient supplies for 
essential physiological process. Under high transpiration, 
stomata closure is the initial step to decrease water loss 
under drought conditions in cotton crop. Ray and Sin-
clair [82] reported that among the eight corn (Zea mays 
L.) hybrids there were statistical differences in the frac-
tion of transpirable soil water at which the stomata began 
to close during a drying cycle. Hence, stomatal conduct-
ance would be a possible indicator for inducing drought 
tolerance, although a negative correlation is associated 
between drought resistance and stomata conductance in 
cotton.

Osmotic adjustment
Osmotic adjustment is an acclimation strategy to sus-
tain higher cellular turgor potential and water retention 
against moisture stress. In other crop species, osmotic 
adjustment of leaf is strongly correlated with drought 
resistance. In response to water stress, osmotic adjust-
ment take place in plant cells via increased of compatible 
solutes in the cytosol. This reduces the osmotic poten-
tial of the cell to sustain cell turgor and development. 

Compatible solutes like proline, sorbitol, and glycinebe-
taine, and are more soluble and do not interfere with cell 
metabolism even at higher concentration [83]. In plants, 
proline is a common compatible solute under drought 
stress [83]. However, proline accumulation in droughted 
plants vary and depends on cultivar and growth stage, 
(e.g., in cotton ovaries proline accumulation was higher 
than in the leaf ) (Fig.  2). Pilon et  al. [84] indicated that 
osmotic adjustment in cotton during reproductive stages 
may be higher than during vegetative stages and possibly 
tissue dependent.

Compatible solutes protect proteins and membranes 
from the injury occasioned by elevated concentrations 
of inorganic ions and oxidative damage under water 
deficit [85] and salinity [86]. Foliar applied proline and 
glycinebetaine could be an effective strategy for induc-
ing drought tolerance in cotton crops [87]. In cotton 
plants more glycinebetaine accumulation exhibited 
more drought tolerance. Thus, promoting physiological 
process e.g. leaf photosynthetic capacity, relative water 
content, enhanced osmotic adjustment and low lipid sta-
bility through transgenic or non-transgenic techniques 
may improve crop performance under drought [88]. For 
example, constitutive expression of a mustard annexin 
gene, AnnBj, increased proline and sucrose content in 

Fig. 1  Changes in stomatal conductance (gs) and net photosynthetic rate (Pn) of cotton leaves in response to drought stress and recovery. The 
periods are full squaring to flowering (S1), first flowering to full flowering (S2), full flowering to full boll setting (S3) and full boll setting to boll 
opening stage (S4), respectively. The water treatments were mild stress or 50–55% of maximum soil water (V1), moderate stressor 40–45% of 
maximum soil water (V2), and a well-watered check
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cotton resulted in greater drought tolerance [89]. Fur-
thermore, overexpression of GhAnn1, annexin genein 
cotton, induced drought and salt tolerance by improving 
superoxide dismutase, activity raised proline concentra-
tion and increased soluble sugars [90]. Further studies are 
needed on osmotic adjustment in reproductive organs to 
fully understand this mechanism in cotton plants under 
drought.

Biochemical and molecular mechanisms of drought 
tolerance
Plants avoid a range of external stresses through morpho-
logical adaptation. The mechanism of drought tolerance 
is linked to several biochemical, morpho-physiological, 
and molecular processes. These processes are intensely 
regulated by the hormonal interplay within the plant 
body.

Abscisic acid (ABA)
Abscisic acid (ABA) is a natural plant stress hormone 
and controls; stress responses, growth, and reproduction 
in crop plants. Osmotic stress in plants is related with a 
degree of drought and low water availability [91], which 
induces ABA synthesis, and adaptive mechanisms [92]. 
After stress signals reception by the plasma membrane, 
abscisic acid synthesis is initiated and occurs in the plas-
tids with the exclusion of xanthoxin transformation to 
ABA. This occurs in the cytoplasm [93]. ABA is gener-
ally synthesized in roots and transported to upper parts 
of the plant via vascular tissues [94]. In cotton, percep-
tion and signal transduction of ABA are facilitated either 

by ABA-dependent or ABA-independent passageway, 
where the former is key player in the expression of stress-
responsive gene during numerous stresses, particularly 
under osmotic stress. Numerous receptors have been rec-
ognized in plasma membrane, cytosol, chloroplast enve-
lope and nucleus. Under non-stress environment, plants 
show low ABA content and sucrose non-fermenting 
1-linked protein kinase 2 (SnRK2) proteins action is sub-
dued via protein phosphatase 2C (PP2C), which results 
in dephosphorylation. In cotton plants, ABA improves 
drought tolerance by regulation of stress-associated gene. 
Overexpression of ABA-induced cotton gene GhCBF3 in 
Arabidopsis led to drought resistance in transgenic lines 
through maintaining higher relative water levels, chloro-
phyll and proline content than wild type [95]. Compared 
with wild type transgenic line, AREB1 and AREB2 show 
higher expression levels, while lower stomatal aper-
ture upon treated with ABA. Suggesting that, GhCBF3 
can improve drought resistance through ABA signaling 
pathway.

Jasmonic acid (JA)
Jasmonic acid (JA) is regarded plant phytohormone and 
its active derivatives termed jasmonates. It plays a key 
role in combating several biotic and abiotic stresses. Fur-
thermore, better root structure, tendril coiling, pollen 
production and fruit ripening are associated with JA [96]. 
Studies reported that exogenously applied jasmonates 
increases plant performance under arid environments 
[97] and regulate stomatal dynamics [98]. Jasmonic acid 
signaling pathway and biosynthesis have been widely 

Fig. 2  Proline concentration (μmol g−1 DM) in the leaves and ovaries of two cotton cultivars. The water treatments were water stress (black bars) 
and well–watered (gray bars). Different letters indicate significant differences (P ≤ 0.05) [84]
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studied [99]. The jasmonate-zim domain (JAZ) repressor 
protein plays significant roles in the JA signaling path-
way which perform as a switch for JA signaling. Under 
non-stress environment and absence of JA, jasmonate-
insensitive/jasmonate-zim (JAI3/JAZ) proteins link to 
numerous transcription aspects including myelocytoma-
tosis (MYC2) and suppress their activity. Nevertheless, 
under deficit water, when JA and its derivatives are pre-
sent, degradation of JAZ proteins happens as depicted 
above, causing active transcription factors i.e. MYC2, 
that up-regulate genes associated with stress tolerance 
[100]. Usually, plant hormones do not perform in sin-
gle pathways, but somewhat depended on each other at 
various phases to regulate ambient and developmental 
pathways. In plants, signal transduction arises and can 
organize numerous developments to respond to harsh 
environment in a complicated way [98].

Reactive oxygen species (ROS)
Fractional reduction of atmospheric O2 causes the gen-
eration of reactive oxygen species (ROS) also called 
active reactive oxygen intermediates (ROI). Cellular 
ROS is composed of four categories i.e. the hydroxyl 
radical (HO·), superoxide anion radical (O2

−), hydro-
gen peroxide (H2O2), and singlet oxygen (1O2). HO· and 
1O2 are relatively more reactive and can oxidize DNA, 
and RNA, lipids and proteins, ultimately causes cell 
death [101]. Sub-cellular sites, i.e. cell wall, chloroplast, 
nucleus, mitochondria and plasma membrane, induces 
ROS production [102]. Production of these ROS raises 
under drought e.g. a reduction in CO2 fixation results 
in diminished NADP+ redevelopment during the Calvin 
cycle. This decreases photosynthetic electron transport 
chain the activity. Furthermore, too much electrons leak-
age to O2 by the Mehler reaction in drought-treated cells 
can also improve ROS production during photosynthesis 
[103]. The Mehler reaction lessens O2 to O2− by donation 
of an electron in photosystem I. O2− can be transformed 
to hydrogen peroxide by superoxide dismutase which 
can be further transformed to water by ascorbate per-
oxidase [104]. Nevertheless, it is hard to assess the levels 
of ROS generated during the Mehler reaction relative to 
those produced via photorespiration. Moisture stress also 
increases the photorespiratory pathway, principally when 
RuBP oxygenation is high owing to partial CO2 fixation. 
Approximately 70% of the total H2O2 production under 
moisture stress takes place via photorespiration [105].

Plants have complex scavenging mechanisms and con-
trolling pathways to screen ROS redox homeostasis to 
avoid additional ROS in cells. In cotton plants, changes in 
antioxidant enzyme metabolism can affect drought resist-
ance. The antioxidant systems have been developed by 
plants to continue their growth. This system is composed 

of enzymatic and non-enzymatic complements. These 
enzymes are superoxide dismutase, ascorbate peroxi-
dase, guaiacol peroxidas, monodehydroascorbate reduc-
tase, catalas, dehydroascorbate reductase and glutathione 
reductase. Reduced ascorbic acid (AA), flavonoids, carot-
enoids, proline, glutathione and (GSH), α-tocopherol are 
the non-enzymatic constituents. These two constituents 
act together to scavenge ROS [106, 107]. Ascorbate per-
oxidase, combine with NADH MDAR, and GR, detox-
ify H2O2 through the Halliwell–Asada pathway [107]. 
Ascorbate reduces MDHA to MDHAR. Nevertheless, 
2 molecules of MDHA can be non-enzymatically trans-
formed to MDHA and dehydroascorbate, which is fur-
ther reduced to ascorbate through the NADH and GR 
cycle [108]. Glutathione (GSH) is reduced by GR oxida-
tion at the presence of NADPH. Glutathione reductase 
activity increases under moisture stress to retain oxidized 
and reduced glutathione ratios at certain levels [109]. 
The equilibrium between antioxidative enzyme activities 
and ROS production decides, if oxidative signaling and/
or loss occur [110]. The antioxidative ability of different 
cotton cultivars regulates the resistance potential to dry 
conditions. In cotton, moisture stress induces ROS pro-
duction, but in contrast, the APX and GR activities can 
also improve and sustain the ROS scavenging process 
[111]. Nutrient (Zn) application have been found to mini-
mize polyethylene glycol (PEG)-induced oxidative dam-
ages in cotton. This increases CAT, APX, SOD, activities 
and non-enzymatic antioxidants content [112]. Zhang 
et al. [111] found in a drought-tolerant (CCRI-60) cotton 
line has led to increased GR activity and improved pro-
line level. Compared with the sensitive (CCRI-27) CCRI-
60 had potential to scavenge free radicals and protect 
the plants from harsh conditions. As a result, indicating 
improved growth and induced tolerance in response to 
drought stress. Down-regulation of GbMYB5 in G. bar-
badense led to reduced antioxidant enzyme activities 
include CAT, peroxidase (POD), SOD, and glutathione 
S-transferase (GST), and enhanced oxidative stress when 
exposed to moisture stress [113]. However, further inves-
tigations are needed to identify genes involved in the 
antioxidant enzyme-related pathways in drought resist-
ant cotton cultivars. Additionally, application of Zn and 
K supplies can also improve the antioxidant system of 
cotton plants [107–114].

Strategies to improve drought tolerance
Globally, numerous management strategies are imple-
mented for better crop production under stressful 
environments. The combined application of various man-
agement options is critical due to agricultural, financial, 
social and ecological limitations. Among these, nutri-
ents management is regarded a quick and more effective 
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better strategy to tackle abiotic stresses. Incremental 
transformations in cotton productivity are important, 
particularly in arid regions due to limited soil water avail-
ability. In this context, cotton crop that demand a lesser 
amount of water but produce optimal yields and good 
quality fiber will be more necessary. Despite the tradi-
tional breeding programs, improvement in biotechnology 
can harvest desirable cotton crops that produces optimal 
yields in the current and future harsh environmental con-
ditions. Exogenous use of growth regulators, soil amend-
ments, specific osmoprotectants, and essential nutrients 
can enhance drought resistance in vulnerable plants.

Exogenous application of substances
Application of hydrogels
Hydrogels are super absorbent polymers and possess the 
potential to retain substantial quantity of water. Utiliza-
tion of these substances in many industrial and environ-
mental zone may be possible [115]. In agriculture, water 
retention capacity of soil can be enhanced by the addition 
of hydrogels. Cellulose, pectin, chitin and carboxymethyl 
cellulose (CMC), are the natural macro-molecules having 
high potential to absorb water to form hydrogels. They 
swell quickly and hold enormous amount of water in 
three-dimensional structure, when placed in water [116]. 
In controlled release systems, the utilization of hydro-
gels since the availability of suitable nutrients in soil is an 
aspect for crops productivity [117]. Furthermore, exist-
ence of hydrogels in the soil increases water availability 
and decreases nutrients loss by percolation and leaching. 
Enhancement of soil aeration and drainage, and a faster 
rate of plant root and shoot growths [107]. In conclu-
sions, use of hydrogels enhances soil water retention 

capacity and water uptake. Hydrogels can improve plants 
performance by enhancing soil permeability, infiltration 
rates, reducing irrigation frequency, decreasing soil ero-
sion and lessen water loss.

Appropriate and adequate fertilization
Maintenance of adequate potassium (K) nutrition to 
plants has been found critical to mitigate drought stress. 
Potassium is the most important plant macro-nutrient 
with regard to cotton water relations, and it influences 
plant biochemical and physiological processes regulating 
to development and metabolism [118]. Compared to con-
trol conditions, K fertilization can significantly improve 
cotton yield and yield contributors under stress (Table 1).

ROS generation in drought stressed crops may further 
be increased when combined with K deficiency [119]. 
CO2 fixation in K-stressed plants greatly restricted by 
impairment in stomata regulation when subjected to 
drought. Under drought, in plant cells increasing extra-
chloro-plastic K+ concentrations with surplus applica-
tion of K+ could prevent photosynthesis inhibition under 
moisture stress [120]. An adaptive K demand for drought 
subjected plants may be associated to the role of K in 
enhancing photosynthetic CO2 fixation and transport of 
photosynthates to sink. By this way inhibiting the transfer 
of photosynthetic electrons to O2 resulting in low ROS 
production [119]. A recent study demonstrated that K 
fertilizer application induced drought tolerance in cotton 
plant by improving leaf photosynthetic capacity, biomass 
accumulation and enhanced down-stream carbohydrate 
metabolism [120]. In summary, an adequate K supply can 
increase cell membrane stability, leaf area, root growth, 
and final biomass for drought stressed plants and also 

Table 1  Effect of  short-duration drought stress and  recovery after  re-watering at  flowering stage on  seed cotton yield 
(SCY) and its components in two different cotton cultivars under different K rates

For each cultivar, values followed by a different letter within the same column are significantly different at P ≤ 0.05 probability level. Each value represents the mean of 
three replications [114]

Cultivar Water regime K level Number of bolls/plant Boll weight (g) SCY/plant (g)

Siza 3 Control 0 14.6c 4.9c 71.41c

150 16.8b 5.5a 93.20b

300 18.2a 5.7a 103.15a

Stress 0 7.6f 4.5d 35.94e

150 11.3e 5.2b 58.68d

300 12.9d 5.5a 67.98c

Simian 3 Control 0 16.1b 4.6cd 74.25c

150 17.6a 4.9b 86.22b

300 18.6a 5.2a 95.86a

Stress 0 8.8e 4.2e 38.09f

150 11.4d 4.5d 50.34e

300 13.0c 4.7c 58.55d
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improves water uptake. This indicate that, appropriated K 
nutrition is important for plant osmotic adjustment and 
alleviating ROS impairment. The potential roles of K in 
plants exposed to drought stress are presented in (Fig. 3).

Growth regulators
Both, natural and synthetic plant growth regulators can 
reduce the adverse effects of deteriorated environmental 
conditions on plant development. Foliar application of 
growth regulators and osmoprotectants can also improve 
drought resistance in cotton. Exogenous application of 
osmoprotectants and plant hormones such as salicylic 
acid (SA), proline, ABA, glycinebetaine, polyamines and 
gibberellic acid (GA3) have been found to induce mois-
ture stress tolerance. In plants, these hormones, elevated 
osmotic adjustment to increase turgor pressure and 
enhance addition of antioxidants to detoxify ROS; sus-
taining the integrity of membrane structures and mac-
romolecules under moisture stress environment [121]. 
Glycine betaine and proline have been reported effec-
tive in minimizing the negative impacts of water stress 
on cotton. Similarly, exogenous GA use can enhance leaf 

photosynthetic capacity, stomata conductance and tran-
spiration rate of cotton crop [122].

Molecular basis of drought tolerance
Tolerance to water stress is a quantitatively controlled 
trait in plants. Drought changes the expression of genes, 
regulating water transport, oxidative damage, osmotic 
balance and damage repair mechanism. Recently devel-
oped molecular tools e.g. RNA-Seq and bio-informatic 
have accelerated the discovery of stress responsive genes 
in many plant species. For example, 33 QTLs have been 
identified in F3 plants originated from a cross between G. 
barbadense and G. hirsutum for water deficit conditions, 
including 5, 11 and 17 QTLs for physiological traits, plant 
productivity and fiber quality, respectively [123]. Most of 
the identified QTLs for drought tolerance were located 
on c2, 6 and 14 chromosomes [53]. Levi et al. [124] used 
marker-assisted selection for generating near-isogenic 
lines with greater drought tolerance and yield potential 
from the G. barbadense and G. hirsutum hybrids. Further, 
the G. hirsutum plants displayed greater levels of metab-
olites and more stable photosynthesis compared with 
G. barbadense under drought and well water conditions 

Fig. 3  The relationship between potassium supply and morpho-physiological characteristics in response to water deficit conditions in cotton crops
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[124]. Similarly, QTLs related to osmotic potential (on 
chromosome c1, c2, 6 and 25), chlorophyll (on c2 and 
c14) and leaf morphology have been identified in drought 
tolerant cotton genotypes. In addition, 15 markers were 
found related to drought tolerance in 323 G. hirsutum 
genotypes with the help of microsatellite markers. Out 
of these, 12 markers showed negative and the remaining 
showed positive allele effects for drought tolerance [125]. 
Likewise, Zheng et  al. [123] identified 11 physiological 
and morphological marker traits linked with drought 
tolerance in the field-grown cotton crop, while 67 and 
35 QTLs were expressed under water drought and non-
drought environment, respectively. These QTLs were 
mainly located on chromosome c16, c9 and c2.

Role of miRNAs in drought stress alleviation
MicroRNAs (miRNAs), a class of endogenous non-cod-
ing small RNAs molecules, play an imperative role in 
response to several abiotic stresses [126]. For instance, 
hormone mediated signaling cross talk in crops was 
involved in combating drought stress, i.e. abscisic, eth-
ylene and salicylic acid [127]. In plant, gene expression 
and hormonal regulation is an effective strategy to com-
bat drought [128] which are in turn are controlled by 

miRNAs. Drought stress responsive miRNAs are shown 
to participate in various crops species like Arabidopsis 
[129], rice [130], cotton [131] and Brassica napus [132]. 
The role of miRNAs under drought stress have been pre-
sented (Fig. 4). In the current agricultural systems, scien-
tists are paying more attention to improve lint yield and 
quality and the mechanisms of fiber development and 
adaptation of drought [133]. Exposure to long term water 
deficit conditions can cause in serious metabolic disor-
ders in cotton plants leading to tissue dehydration, ionic 
toxicity and nutritional imbalance [134]. In cotton over-
expression of GhCIPK6 gene improved drought resist-
ance. This indicates that it could be a helpful to combat 
moisture stress in cotton [135]. Transgenic tobacco over-
expression of the C mitogen-activated protein kinase 
gene (GhMPK2) in cotton group resulted in lower water 
with greater resistance to drought. This indicates that 
GhMPK2 might be positively adjusts drought resistance 
in cotton [136]. A sequence of cotton miRNAs is asso-
ciated with genes, such as miR172, miR6158, miR396, 
miR164, ghr-n56, ghr-n59, ghr-n24 and miR1520. Inter-
estingly, 163 cotton miRNAs were explored to target 210 
genes associated with fiber development [131]. In brief, 
miRNAs are novel tool to improve plant performance 

Fig. 4  Different cellular processes in association with miRNAs for drought tolerance in plants
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under harsh environmental conditions. More studies 
on the function and expression of these miRNAs will be 
needed to explain their regulatory role in inducing toler-
ance to harsh environments.

Transgenic approach
At molecular level, plants respond to abiotic stresses by 
altering expression of genes that in turn regulate pro-
tein synthesis and biological functions [137]. Regulation 
of these genes imparted stress response is an essen-
tial factor in plants that enhance plants growth and 
development under abiotic stresses. Various pathways 
associated with drought tolerance have been identi-
fied in transgenic cotton cultivars under controlled and 
field (Table  2). Out of thousands of identified genes, 
only fewer genes were associated with drought toler-
ance. Various genes, regulating response of Pima cotton 
(G. barbadense) to stressed environments e.g. drought, 
salt, heat, cold, and phosphorus deficiency have been 

identified using normalized cDNA libraries [138]. These 
desired traits may be transferred to upland cotton (G. 
hirsutism) through intraspecific breeding or genetic 
engineering techniques [139]. For example, transfer of 
genes from Thellungiella halophile overexpressing TsVP, 
an H+-PPase into cotton genotypes enhanced shoot and 
root growth than wild type. This improved performance 
of transgenic lines was the result of higher leaf chloro-
phyll level; photosynthesis efficiency, water content and 
cellular thermos-stability. Improved root structure and 
lower solute potential of transgenic plants enabled trans-
genic cotton to produce 51% more seed cotton than the 
wild type cotton [140]. Transfer of ScALDH21 gene from 
Syntrichia carninervis induced drought tolerance in cul-
tivated cotton [141]. At natural environment, transgenic 
lines produced greater biomass, bigger bolls and fiber 
yield relative to the wild type under drought stress. This 
superior performance of transgenic cotton was achieved 
through improved physiological traits e.g. higher proline 

Table 2  Successful stories of GM plants against drought stress

Environmental condition Stress type Beneficial features for drought tolerance Yield References

Greenhouse and field Drought Improved water use efficiency (WUE), photosynthesis, root 
system and osmotic adjustment and scavenging ROS

NA [142]

Laboratory and green house Drought and heat Enhanced protection of photosynthesis, seedlings and leaf 
viability

NA [137]

Laboratory, greenhouse and field Drought and salt Increased proton pump activity of the vacuolar pyrophos-
phatase, auxin polar transport stimulation lead to root 
development

Increased 20% [143]

Laboratory and greenhouse High chlorophyll content, improved photosynthesis, higher 
relative water content and less cell membrane damage

Increased 40% [140]

Laboratory, greenhouse and field Drought Increased production of ABA and proline content NA [144]

Green house Enhanced proline content and root development, while tran-
spiration rate decreased

131% more bolls [145]

Green house and field Drought and salt Enhanced sequestration of ions and sugars into vacuole, 
reduced water potential, and enhanced root biomass

20% increased [146]

Greenhouse Drought Higher relative water content and proline level while reduced 
H2O2, lipid peroxidation and electrolyte leakage

57.6%, more bolls [147]

Greenhouse Drought Improved photosynthesis, roots and shoots, higher relative 
water content and less cell membrane damage

51% higher [88]

Greenhouse Drought Increased photosynthesis, higher relative water content, better 
osmotic adjustment, less ion leakage and lipid membrane 
peroxidation

3–12% more [148]

Greenhouse Drought Higher photosynthesis, delayed leaf senescence NA [149]

Greenhouse Drought and salt Longer roots, higher chlorophyll and proline content, higher 
germination rate and soluble sugar, lower lipid peroxidation

NA [150]

Greenhouse Drought Higher soluble sugar and proline content, enhanced super-
oxide dismutase and peroxidase, improved cell membrane 
integrity, increased net photosynthesis, stomatal conduct-
ance, transpiration rate and root length

NA [150]

Laboratory green house and field Drought and salt Increased proline and soluble sugar content, well developed 
roots, reduced leaf stomatal density, increase ROS scaveng-
ing enzymes

43% higher [144]

Green house and field Drought Proline content and sugar increased, higher peroxidase activ-
ity, reduced loss of net photosynthetic rate, reduced lipid 
peroxidation, greater plant height, larger bolls

Yield increased [141]
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and soluble sugars, photosynthesis and lower lipid perox-
idation. These discoveries have encouraged scientists to 
engineer water deficit resistance crops (cotton) through 
genetic engineering technology. As a result, various 
desired genes have been transferred into cotton plants. 
However, field validation of these transgenic plants is 
still needed as most of these experiments have been per-
formed under controlled environments and did not pro-
duce significant results in the field.

CRISPR/Cas9 technology
In recent years, zinc finger nuclease (ZFN) and clustered 
regularly interspaced short palindromic repeat (CRISPR) 
has become a popular genome editing technology. This 
technology is highly important for creating genetically 
engineered plants as well as functional genomic study. 
These systems are associated with (Cas) 9 proteins and 
guide RNA (gRNA) is a rapidly developing genome edit-
ing technology which is effectively employed in many 
plants [151] such as rice [152], Arabidopsis [153], potato 
[154], watermelon [155], maize [156], tomato [157] 
and soybean [158]. Cas9 is composed of two nuclease 
domains in which the largely used one is resulted in from 
streptococcus pyogenes. The gRNA: is a synthetic 100 
nucleotide (nt) RNA molecule. The first about 20 nt are 
the targeting site and the 3′end forms a hairpin struc-
ture that interacts with Cas9 protein [159]. A distinctive 
feature of CRISPR/Cas9 is that DNA cleavage sites are 
recognized through Watson–Crick base pairing [160] by 
three components: Cas9 protein, CRISPR-RNA (crRNA) 
and trans-activating crRNA (trancrRNA) [161]. The utili-
zation of CRISPR/Cas9 system as a genome engineering 
tool came out when it was revealed that the target DNA 
sequence could be simply re-programmed by altering 
20 nucleotides in the CRISPR-RNA [159]. In cotton, the 
application of CRISPR/Cas9 is still at its infancy. Most 
recently, multiple sites genome editing through CRISPR/
Cas9 system in allotetraploid cotton by targeting arginase 
(GhARG), discosoma red fluorescent protein2 (DsRed2) 
and chloroplast development (GhCLA1) genes suggests 
that it is highly reliable and effective for cotton genome 
editing [162]. The ZFN is a laborious method because of 
complications in protein design, synthesis, and validation 
[163]. These issues were resolved with the exploration 
of CRISPR/Cas9 system, which saves time and cost, and 
is highly efficient [158]. The CRISPR/Cas9 system func-
tions as an endonuclease and it induces double-strand 
breaks (DSB) at specific genome sites. In eukaryotic cells, 
such breaks are preferentially restored by the error-prone 
NHEJ (non-homologous 98 ends joining) pathway and 
often causes bases insertion, deletion resulting in gene 
function loss [164]. In plants, DSBs could be employed 
to knock-out genes [165], modify expression of gene by 

insert transgenes at a certain location via homologous 
recombination [166] or disrupting promoter sequences 
[167]. Considering the reported data about CRISPR tech-
nology; it will be a simple, time saving, cost effective and 
highly effective tool for plant gene expression, repression 
and genome editing. Thus, encouraging the application 
of genome editing tool to yield new alleles and engineer 
plants possessing required quality, agronomic traits and 
good drought tolerance. It is predictable that the possi-
ble applications of CRISPR/Cas9 in cotton genome edit-
ing are certain to be further established over time. In the 
future, advancements will continue to enhance their use 
from mutant generation to precise gene regulation at 
noncoding enhancer regions in cotton.

Conclusions and future research directions
Sustainable crop production is a key goals of the cur-
rent agricultural production systems. Drought is a major 
abiotic stress, limiting crop productivity in many parts 
of the world. Restricted water supply to cotton plants 
can impair normal physiological functioning through 
reduced nutrient supply and cellular toxicity. Therefore, 
improving crop performance under harsh environments 
has become an increasingly important issue. Despite 
major advances in genetic approaches, challenges to 
crop production in terms of genetic and environmental 
interactions for cotton lint production are still not fully 
understood. To date, limited data is available regard-
ing the role of CRISPR/Cas9 technology, ascorbic acid, 
calcium, hydrogel application and the miRNAs under 
drought stress in cotton crops. There are still issues with 
the transgenic crops produced for inducing drought tol-
erance. Further, many transgenic plants have not been 
verified under natural conditions. Therefore, the per-
formance under natural environment is still a question 
mark. Up to date information regarding drought-asso-
ciated genes and their functions is poorly understood 
in cotton crops. Further research is inevitable to study 
these genes in response to drought stress under natu-
ral conditions as well as drought associated cotton pro-
tein kinases. Further research is needed for enhancing 
crop productivity under drought stress through interfer-
ence (RNAi) technology. Cas9 will develop novel alleles, 
desirable agronomic and quality traits through engineer 
plants and will produce tolerance in crops plants against 
drought stress and or harsh environmental conditions.
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