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Degradation of mitochondrial structure 
and deficiency of complex I were associated 
with the transgenic CMS of rice
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Abstract 

Background:  Mitochondria play a significant role in plant cytoplasmic male sterility (CMS). In our previous study, 
mitochondrial complex I genes, nad4, nad5, and nad7 showed polymorphisms between the transgenic CMS line 
M2BS and its wild type M2B. The sterility mechanism of the M2BS at cytological, physiological, biochemical, and 
molecular level is not clear.

Results:  Cytological observation showed that the anthers were light yellow, fissured, invalid in KI-I2, and full of irregu-
larly typical abortion pollen grains in M2BS. Transmission electron microscopic (TEM) observation revealed no nucleus 
and degraded mitochondria with obscure cristae in anther cells of M2BS. The results of staining for H2O2 presented a 
large number of electron dense precipitates (edp) in intercellular space of anther cells of M2BS at anthesis. Moreover, 
the anther respiration rate and complex I activity of M2BS were significantly lower than those of wild type M2B during 
pollen development. Furthermore, RNA editing results showed only nad7 presented partially edited at 534th nucleo-
tides. The expression of nad5 and nad7 revealed significant differences between M2B and M2BS.

Conclusions:  Our data demonstrated that mitochondrial structural degradation and complex I deficiency might be 
associated with transgenic CMS of rice.

Keywords:  Rice, Transgenic CMS line, TEM, Mitochondrial biochemistry

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Cytoplasmic male sterility (CMS) was maternally inher-
ited in plants and in most cases originated from mito-
chondrial DNA rearrangements which resulted in plants 
inability to produce functional pollen [1–5]. The CMS 
trait was observed in more than 200 flowering plant 
species [6, 7]. CMS produced hybrids using “three-line” 
system can show heterosis, which exhibits the improved 
performance of hybrid progeny in comparison with the 

parental lines [8]. For example, the yield had increased up 
to 20% in hybrids of rice by using CMS lines [9, 10].

Generally CMS was associated with mitochondria, 
which was an essential organelle for cellular energy pro-
duction [10, 11]. Since pollen development required a 
large amount of energy supply, disturbances or disorder 
in mitochondrial functions could have important effects 
on male fertility [5, 12]. The mitochondrial respiratory 
chain consisted of four complexes: NADH dehydroge-
nase complex (Complex I), succinate dehydrogenase 
complex (Complex II), cytochrome c reductase com-
plex (Complex III), and cytochrome c oxidase complex 
(Complex IV). The F0F1-ATP synthase was Complex V. In 
mitochondria, energy was generated by the production of 
proton gradient via electron transport, which catalyzed 
electron transfer from NADH or FADH2 to molecular 
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oxygen and lead to ATP generation [13]. Any disturbance 
of this electron transport process could impair the energy 
production [10].

Mitochondrial complex I was an important pathway 
for the oxidation of NADH in bacteria, higher plants and 
animals, and had to do with plant CMS. In plants, CMS 
phenotype has been described involving nad9 and nad7. 
For instance, the rice CMS line RT98A derived from 
Oryza rufipogon, the orf113 displayed completely identi-
cal sequences to nad9 in the region − 151 bp to + 11 bp, 
whereas the rest consisted of unknown sequences [14]. In 
Nicotiana sylvestris CMS I and CMS II, deletion of exons 
III and IV of nad7 in CMS I and the complete disappear-
ance of nad7 in CMS II resulted in CMS [15].

In our previous study, mitochondrial complex I genes, 
nad4, nad5, and nad7 showed polymorphisms between 
M2B and M2BS [16]. In the present study, in order to 
further understand the relationship between these genes 
and CMS characteristics in M2BS, the anther cytological 
observation were performed, the mitochondrial complex 
I activity and respiration rate were determined, and the 
RNA editing and the relative expression of these genes 
were also analyzed between the two lines.

Materials and methods
Plant materials
M2BS was a transgenic CMS line induced by the partial-
length HcPDIL5-2a transformation in rice [16] using 
M2B as a transgenic receptor material. M2B was an 
indica rice variety and was the maintainer line of M2BS. 
After successively backcrossing, all the plants were 
planted in the field with normal management.

Optical microscopic observation
Anthers morphologic observation was performed by 
camera (Cannon, Japan). Anthers were harvested from 
upon, middle and bottom spike of three plants and 
were stained with 1% I2-KI to observe pollen fertility at 
anthesis.

Scanning electron microscope (SEM)
Anthers were collected at anthesis and fixed for 24  h 
in Carnoy’s Fluid, then dehydrated by a standard series 
of ethanol washes: 70%, 80%, 90%, and 100% each for 
5  min, immediately dried for several minutes, coated 
with gold by a gold sputter, and was analyzed using 
Phenom LE electron microscope.

Transmission electron microscope (TEM)
The anthers on the top portion of spikes were used and 
placed in a bottle contained 2.5% glutaraldehyde buffer 

solution at anthesis. Air was pumped out of centrifuge 
tubes in order to soak anthers fully in buffer solution. 
Anthers were fixed, dehydrated, embedded and exam-
ined according to the reference [17].

Cytochemical detection of H2O2
H2O2 was visualized at the subcellular level using CeCl3 
for localization [18]. Electron-dense CeCl3 deposits are 
formed in the presence of H2O2 and are visible by trans-
mission electron microscopy. Anthers were excised 
from CMS line and maintainer line at anthesis and 
incubated in freshly prepared 5  mM CeCl3 in 50  mM 
MOPS at pH 7.2 for 1 h. The experimental method was 
referred to [19].

Determination of mitochondrial complex I activity 
and respiration rate
Spike samples from booting stage and anthesis were 
collected and stored at − 80 ℃ for determination of bio-
chemical attributes. The activity of mitochondrial com-
plex I was determined using mitochondrial complex I 
Kit (COMIN, Suzhou, China). The experimental opera-
tion was completed according to the kit instructions of 
manufacturer. Calculated by the fresh weight of sample, 
each gram organization consumes 1  nmol NADH per 
minute, defined as an enzyme activity unit. The formula 
for measuring using 96 orifice plates was as follows: 
Mitochondrial complex I activity (U/g fresh weight) = [
ΔA × Vt ÷ (ε × d) × 109] ÷ (W × Vs ÷ Vts) ÷ T = 730 × Δ
A ÷ W. Vt: total volume of reaction system, 2.25 × 10–4 
L; ε: NADH molar extinction coefficient, 6.22 × 103 L/
mol/cm; d: diameter of 96 orifice plates, 0.5  cm; Vs: 
sample volume added, 0.01 mL; Vts: the added volume 
of extract solution, 0.202  mL; T: reaction time, 2  min; 
W: sample weight, g. The respiration rate of anthers 
was determined by the method of Balkos et al. [20].

RT‑PCR amplifications
Total RNA samples were isolated from young pani-
cles with CTAB as described by Liu and He [21]. 
First-strand complementary DNAs (cDNAs) were syn-
thesized from 1 μg RNA using PrimeScript RT reagent 
Kit with gDNA Eraser (TaKaRa Bio-medicals, Dalian, 
China). Elimination of DNA was checked by PCR for 
N4 primers, which amplified a 463  bp fragment for 
cDNA and a 1717  bp fragment (including a 1254  bp 
intron) for gDNA (Additional file 1: Fig. S1). The PCR 
amplifications were carried out using a thermal cycler 
(Bio-Rad, Hercules, CA, USA) in a total volume of 25 
μL reaction mixture, which included 12.5 μL 2 × Mix 
(containing high-fidelity DNA polymerase) (Takara, 
Dalian, China), 6.5 μL ddH2O, 2 μL cDNA, 2 μL each 
primer (10  μmol/L each). The primer sequences were 
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listed in Additional file 2: Table S1. The PCR conditions 
were as follows: an initial denaturation step at 94 °C for 
3  min, followed by 34 cycles of denaturation at 94  °C 
for 30  s, annealing at 55  °C for 30  s, and extension at 
72  °C for 1 min, followed by a final extension at 72  °C 
for 5 min.

Sequencing and calculation of editing frequency
The PCR products were eluted, purified, cloned and last 
sequenced by Beijing Genomics Institute (BGI). Editing 
efficiency was determined by totally sequencing at least 
12 cDNA clones from two separate experiments. Editing 
frequency was calculated by the ratio of clones contain-
ing this editing to the total clones sequenced [22]. The 
nucleotide sequences were analyzed through DNA Man 
soft program and submitted to ORF finder and NCBI 
online service. PCR primers used in this study are listed 
in Additional file 2: Table S1.

Quantitative reverse transcription PCR (qRT‑PCR) analysis
qRT-PCR was performed with qTOWER2.2 sequence 
detection system (Jena, Germany) using SYBR® Pre-
mix Ex Taq™ (Takara, Dalian, China). A housekeep-
ing gene glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) of rice served as the internal reference. The 
primer pairs RT-ND5-F/R, RT-nad4-F/R, RT-nad7-F/R, 

RT-GAPDH-F/R were used for qRT-PCR analysis at 
anthesis (Additional file  2: Table  S1). All reactions were 
conducted in triplicate for each sample. The relative 
expression spikes of each transcript were estimated by 
the 2−△△Ct method [23].

Results
Morphological observation of anther
The maintainer line (M2B) anther was yellow (Fig.  1a), 
while the anther of the CMS line (M2BS) were light yel-
low (Fig. 1b). The pollen grains of M2B could be stained 
by KI-I2 and were dark grey (Fig. 1e), whereas the sterile 
pollen grains were invalid in KI-I2 (Fig. 1f ). SEM results 
showed sturdy anther and spherical pollen grain in M2B 
(Fig.  1c, g). However, M2BS presented fissured anther 
and irregularly typical abortion pollen grain (Fig. 1d, h).

Transmission electron microscopy analysis
Studies reported that mitochondrial ultrastructure was 
involved in plant CMS [24]. In this study, TEM was 
performed to study the mitochondrial ultrastructure 
changes in two lines. The results showed intact nucleus in 
M2B anther cells, whereas the nucleus of M2BS exhibited 
degradation and disappearance (Fig.  2a, e). The anther 
mitochondria of M2B revealed intact mitochondrial 
structure and clear ridge. In contrast, the mitochondria 

Fig. 1  Morphological characteristics of anthers. a, c represented the anther of M2B; b, d represented the anther of M2BS; e, g represented the 
pollen of M2B; f, h represented the pollen of M2BS. 10 × 
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degraded to some extent, and the cristae of mitochon-
dria were obscure and disintegrated partly in M2BS 
(Fig.  2b, f ). The mature pollen grains of M2B showed 
circular shape, while M2BS presented non-circular pol-
len grains. In M2B pollen grains, we observed the cellular 
inclusions, while nothing was observed in that of M2BS 
(Fig.  2c, g). Moreover, the intact chloroplast structure, 
dense and clear thylakoids were observed in anther cells 
of M2B (Fig. 2d). However, anther chloroplast structure 
of M2BS was fuzzy and degraded partly, and the thyla-
koids dissolved (Fig. 2h).

Subcellular localization of H2O2 in anther
There were a lot of evidences that plant CMS was accom-
panied by the production of large amounts of reactive 
oxygen species (ROS) [12], and it could be observed 
that the combination of H2O2 and CeCl3 could form the 
electron-dense precipitates at transmission electron 
microscope (TEM). In the present study, the sites of elec-
tron-dense precipitates of CMS line and its maintainer 
line were observed in anther cell at anthesis. The results 
showed that a large number of electron dense precipitates 
appeared in intercellular space of anther cells of M2BS 
at anthesis (Fig. 3b), whereas no obvious electron dense 
precipitates were observed in those of M2B (Fig. 3a).

Changes of respiration rate and mitochondrial complex I 
activity
Mitochondria is the center for plant energy biology and 
plays a vital role in the respiration and metabolism of 
plants. In the present  study, the spike respiration rate 
of two lines were determined both at booting stage and 
anthesis. The results indicated that the respiration rate 
of M2B presented no obvious changes at different stages 
of anther development. However, significant decrease 
was detected in M2BS at anthesis. Compared with M2B, 
the respiration rate at booting stage and flowering stage 
decreased by 14.9% and 47.8% in M2BS, respectively 
(Fig. 4a).

In order to understand the complex I probably associ-
ated with CMS characteristics, the activity of complex I 
was investigated to determine how a partially mitochon-
drial and partially nuclear encoded enzyme reacted to 
this cytoplasmically determined phenomenon of CMS. 
The complex I showed a significantly reduced activity 
in M2BS, compared to M2B during anther development 
process. The complex I activity of M2BS dramatically 
decreased by 22.8% and 51.9%, respectively at booting 
stage and flowering stage (Fig. 4b).

RNA editing and expression of nad4, nad5, and nad7
RNA editing result showed only nad7 presented partially 
edited among these three genes. The CDS region of nad7 

Fig. 2  Transmission electron micrographs of anther mitochondria and chloroplast ultrastructure at anthesis. a-d represented maintainer line M2B; 
e–h represented CMS line M2BS; a, e Nucleus observation; b, f Mitochondria observation; c, g Mature pollen grains observation. d, h represented 
anther chloroplast ultrastructure of M2B and M2BS, respectively. N: Nucleus; mt: Mitochondria; Ch: Chloroplast; P: Pollen grains; cw: cell wall. G: 
Granal thylakoids
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was verified using primers of nad7cds-F and nad7cds-R, 
a specific product approximately 1185 bp was amplified 
from cDNA of M2B and M2BS, respectively (Additional 
file  3: Fig. S2). The comparisons of cDNA and genomic 
sequence data revealed only one distinct editing site in 
the nad7 CDS region of M2B and M2BS (Fig.  5). This 
common editing site located at 534th nucleotides with 
the initiation codon of nad7. The editing efficiency was 
shown in Table  1, and the results showed that the edit-
ing frequencies were higher in M2BS than in M2B. The 
nucleotide substitutions were C-U transitions for this 

editing site in nad7 transcripts, where was a silence 
modification.

In order to further study the transcriptional expression 
of nad4, nad5, and nad7 at anthesis, we performed qPCR 
for M2B and M2BS. The results showed that The expres-
sion of nad5 and nad7 revealed significant differences 
between two lines (Fig. 6).

Discussion
Mitochondria is an essential organelle in cell not only 
because it supplies over 90% energy for cells but also 
because its dysfunction is associated with disease [25]. As 

Fig. 3  The sites of electron-dense precipitates of anther at anthesis. a, b represented M2B and M2BS, respectively. edp: electron-dense precipitates; 
cw: cell wall

Fig. 4  Respiration rate and mitochondrial complex I activity during different pollen development stages
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the main organelle of energy metabolism, the structure 
and quantity of mitochondria might be related to male 
sterility [24]. Changes in mitochondrial structure lead to 
abnormal electron transfer chains or subunit complexes 
of ATP enzymes involved in energy metabolism in mito-
chondria, resulting in the absence of sufficient energy 
supply for microspore development and pollen abor-
tion [26]. In the present study, the disappearance of cell 
nucleus and the abnormal mitochondrial structure were 
observed in anthers of CMS line (Fig. 2). It was in accord 
with previous studies [27–29]. These findings may sup-
port the opinion that abnormal mitochondrial structure 
may be the cellular morphology characteristics of male 
sterility. In addition, a large number of electron dense 
precipitates appeared in intercellular space of anther 
cells of M2BS (Fig.  3b). It was indicated that the H2O2 
burst and the production of these ROS at anthesis would 
also have influences on pollen development and growth. 

These findings were consistent with the results observed 
in Brassica napus [30].

Mitochondria was the site of aerobic respiration. Res-
piration rate was an important physiological attribute 
for identifying plants respiration intensity and energy 
metabolism [31]. Previous studies showed lower respi-
ration rate in male sterile anthers compared with fertile 
ones, indicating some defects in some steps of respiration 
in male sterile anthers [32–35]. In this study, the respi-
ration rate of the CMS line was lower than that of the 
maintainer line (Fig.  4a), which was in agreement with 
the reports mentioned above.

Mitochondrial complex I was one of the largest macro-
molecular complexes [36, 37] which played an important 
role in the cellular energy production. Complex I, a func-
tional enzyme, generated reactive oxygen species (ROS), 
which could be detrimental, but was also of importance 
for cell signaling [38]. Defects in this enzyme lead to a 
severe disturbance of energy metabolism and often lead 
to severe inherited metabolic disorders [39]. Ducos et al. 
[40] found that the NAD9 subunit had a C-terminal 
extension while COX2 subunit had a truncated C-ter-
minus in two mutations of CMS wild beet. Further, they 
reported that the complex I activity was unchanged in 
leaves, but the complex IV activity was reduced by 50%. 
In the present investigation, the different result was 
obtained and the lower complex I activity was detected in 
M2BS (Fig. 4b).

CMS and RNA editing were two important phenomena 
involving in plant mitochondria. It was generally agreed 
that CMS was caused by altered gene expression due to 
defective or inadequate RNA editing [22, 41–43]. Kim 
et al. found defects at seven specific editing sites in five 
mitochondrial genes (cox2, cox3, nad2, nad4 and ccmc) of 
an ogr1 rice mutant, which were in connection with pol-
len grain abnormalities [44]. Recently, editing was absent 
in nad4 at position 1033 of mutant plants, which carried 
a cytidine residue at this position, where wild type plants 
instead carried a uridine residue [45]. Compared to 
Weibenberger et al. [45], in the present study, the nucleo-
tide substitutions were all C-U transitions for the editing 
site in nad7 transcripts, where was a silence modification 
site (Fig. 5) and the expression of nad5 and nad7 revealed 

Fig. 5  Editing site of nad7 

Fig. 6  The relative expression of nad4, nad5, and nad7 

Table 1  Editing frequencies of  nad7 transcripts in  M2B 
and M2BS

The site numbers are determined by the nucleotide positions with the initiation 
codon of nad7, where editing occurs. The 534th editing site is C-U conversion

Materials Numbers of Clones(534th) Editing 
frequency 
(%)C T

M2B 6 6 50.0%

M2BS 5 7 58.3%
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significant differences between two lines (Fig. 6). There-
fore, it was inferred that the mutation, RNA editing, and 
expression of the complex I genes may be associated with 
the CMS. In our previous study, the results showed chlo-
roplast differences in leaves of two lines, such as photo-
synthetic parameters, chloroplasts ultrastructure, soluble 
sugar and starch content, sugar and starch metabolism 
genes expression, and photosynthetic related genes [46]. 
As is known to all, chloroplast is an important site for the 
photosynthesis and mitochondria is the place of respira-
tion. Photosynthesis uses light energy and water to con-
vert atmospheric carbon into carbon-rich compounds 
such as carbohydrates. Respiration oxidizes these com-
pounds, releasing useable energy and forming carbon 
intermediates needed for biosynthesis. On a whole plant 
basis, up to 70% of the fixed during photosynthesis can 
be released back into the atmosphere by mitochondrial 
respiration [47]. Therefore, a further understanding of 
both photosynthesis (chloroplast) and respiration (mito-
chondria), and the interplay between them, is necessary.

Conclusion
Morphological and cytological observations showed 
significant differences between M2BS and M2B. The 
anther respiration rate and complex I activity of M2BS 
were significantly lower than those of M2B during pollen 
development. The expression of nad5 and nad7 revealed 
significant expression differences between two lines. 
Overall, the mitochondrial structural degradation and 
complex I deficiency might be associated with the trans-
genic CMS of rice.
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