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Abstract 

The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just 
the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical 
players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravel-
ling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered 
a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source 
of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility 
of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells 
(GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed 
at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress 
and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future 
perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.
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Introduction
The central nervous system (CNS), traditionally divided 
into the brain, spinal cord, and retina, is composed of 
neural tissue consisting of neuronal and glial cells. Glia 
is composed of astrocytes, oligodendrocytes, ependymo-
cytes, and microglia.

Glial-restricted progenitors (GRPs), glial progenitor 
cells (GPCs), oligodendrocyte progenitors, or precursor 
cells (OPCs), or NG2-cells [38, 111], represent approxi-
mately 5% of all cells of the central nervous system and 
are the primary source of myelinating oligodendrocytes 
in the CNS [22]. Despite some discrepancies, in the 

following review article, the terms “GRPs” and “OPCs” 
shall be defined as did the authors of a cited publication. 
However, for clarity, please refer to Chapter  2 (Nomen-
clature duality: The relationship between GRPs and 
OPCs) below.

Due to the enormous complexity of neuronal circuits, 
synaptic architecture and interactions between vari-
ous cells of the CNS brain functioning is still not fully 
understood, and so are the means to treat pathologies 
thereof. As of 2017, the annual cost of treating neuro-
logical diseases reached $800 billion in the US alone, 
with some orphan illnesses still lacking effective rem-
edies [40]. Since oligodendrocytes are the sole source of 
myelin across the CNS, their pathologies and subsequent 
demyelination cause many diseases in children, those 
include various leukodystrophies, including Pelizaeus-
Merzbacher disease (PMD) or Krabbe disease (KD), and 
in adults—pathologies such as amyotrophic lateral scle-
rosis (ALS), multiple sclerosis (MS), Huntington’s disease 
(HD), or spinal cord injury (SCI). They are also linked to 
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Alzheimer’s disease (AD) and schizophrenia [38]. Given 
that most of these pathologies are in some way related to 
glial dysfunction, transplantation of exogenous cells with 
glia-generating potential could be a new, promising ther-
apeutic approach. Such grafts could compensate for glial 
deficits and act as cellular mediators stimulating endog-
enous regeneration and replacements for defective glia.

GRPs can differentiate into astrocytes and oligoden-
drocytes in vitro and in vivo [88]. Meanwhile, differentia-
tion into neurons was not reported even upon migration 
into neurogenic environments [50].

Nomenclature duality: the relationship 
between GRPs and OPCs
At this stage, the Reader may already seem confused with 
the GRPs/OPCs nomenclature duality. Unfortunately, 
there are still contradicting opinions when defining a 
clear relationship between glial GRPs and OPCs based 
on the past literature. As shown by our group GRPs are 
multipotential cells with the potential to only generate 
cells from the glial lineage. These include oligodendrocyte 
progenitor cells (OPCs) which give rise to oligodendro-
cytes, and astrocyte progenitor cells (APCs) generating 
type 1 and type 2 astrocytes [146]. Martins-Macedo et al. 
attempted to list all the glial precursors, demonstrating 
some distinctions between oligodendrocyte progenitor 
cells/oligodendrocyte and type-2 astrocyte, motoneuron-
oligodendrocyte precursors, astrocyte restricted precur-
sors/astrocyte precursor cells, white matter progenitor 
cells, and glial restricted precursor cells (GRPs) [94].

In a landmark study, Weng et al. attempted to deline-
ate the diversity and cell fate determinants of glial pro-
genitors on a transcriptomic level by targeted single-cell 
RNA sequencing. By adopting unsupervised cluster-
ing using t-distributed stochastic neighbor embedding 
(t-SNE), the authors found that in the developing mouse 
cortex, OPCs exhibit a fate-restricted continuum encom-
passing an intermediate, “pri-OPC” population closely 
resembling adult activated NSCs (PPP1R14B+, ASCL1+, 
BTG2+, HES6+) and a finally-committed OPC cluster 
(PDGFRA+, CSPG4+). Moreover, a fraction of both pri-
OPCs and OPCs express cell cycle-related genes, which 
indicates that they remain proliferative during early oli-
godendrogenesis [170]. To provide more insight into the 
transitions between various oligodendrocyte-generating 
progenitors, Marques et  al. performed bulk and single-
cell RNA sequencing on the forebrains and spinal cords of 
E13.5 and P7 mice. In their findings, the group observed 
that PDGFR+ cells within the central nervous system dis-
play substantial heterogeneity. However, there seems to 
be a convergence in spatial and temporal transcriptional 
profiles during the shift from embryonic pre-OPCs to 
OPCs in development. OPCs emerging from different 

areas within the embryonic germinal zones eventually 
exhibit considerable similarity [91]. One may speculate 
that these cells might demonstrate a transitional state, 
either differentiating exclusively toward restricted OPCs 
(“pre-OPCs”) or, alternatively, they might be bi-potential 
progenitors retaining bona fide glia-generating potential 
(GRPs). However, as already shown, some authors use 
the names: GRPs and OPCs synonymously [39], often 
focusing on the myelination process as an oligodendro-
cyte function. Perhaps some generalizations were made 
during these studies due to limited research methodology 
or simplicity. Meanwhile, multipotential GRPs defined 
explicitly as oligodendrocyte and astrocyte-generating 
cells would be promising therapeutic cells for transplan-
tation since today, apparent cooperation is demonstrated 
between glial cells in the brain, such as with astrocytes 
supporting oligodendrocyte survival and myelination 
[157]. Furthermore, there is also an evident glial compo-
nent in many neurodegenerative diseases [141]. There-
fore, we believe setting new therapeutic trends based on 
such up-to-date results would be advisable. One such 
idea would be the global glia replacement which tackles 
whole-brain events, such as global dysmyelination [146, 
166]. In this review, we will keep the same cell terminol-
ogy as used in the author’s original texts. However, for 
future clarity, we urge the scientific community to avoid 
further nomenclature ambiguity and treat OPCs as a 
progeny of GRPs.

Characteristics of GRPs
The first step in utilizing the therapeutic potential of a 
given cell is to familiarize with its ontogenesis, pheno-
type, and functions. Below is the review of GRPs’ fetal 
development providing insight into their endogenous 
niches, unique morphological and molecular identity by 
which they are identified, and the wide range of functions 
they can perform after exogenous delivery into the adult 
CNS.

Ontogenesis
Following gastrulation, during ectodermal development, 
neuroepithelial cells generate and settle along the neu-
raxis within the ventricular subependyma where primary 
neural stem cells (NSCs) are forming, giving rise to neu-
rons, astrocytes, radial glia, and GRPs. GRPs start migrat-
ing and eventually reside throughout the CNS [138].

The current understanding of human GRP (hGRP) 
ontogenesis is drawn partially from rodent studies. In 
mice, the development of GRPs occurs in three distinct 
waves with apparent, albeit subtle, differences between 
the brain and spinal cord. In the brain, the first wave 
occurs on embryonic day 12.5 (E12.5) in the ventral neu-
ral tube and is driven by a sonic hedgehog (Shh) derived 
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from the ventral floor plate. Shh is one of the key signal-
ing molecules involved in the regulation of morphogen-
esis during embryonic development and is necessary for 
expressing two GRP stage-specific transcription factors: 
Olig1 and Olig2, which, in turn, control the expression of 
key genes involved in oligodendrocyte specification and 
maturation [161]. GRPs form mainly within the medial 
ganglionic eminence and start migrating throughout 
the developing forebrain. Later, the second wave occurs 
on E15.5 from the lateral ganglionic eminence under 
the transcriptional control of Gsx2 and again progresses 
throughout the cortex. Finally, the third wave occurs 
neonatally and postnatally from the subventricular zone 
(SVZ). Driven by Emx1, these third-wave GRPs migrate 
throughout the brain and mix with GRPs derived at ear-
lier stages [63].

Similarly, the first wave in the spinal cord is controlled 
by ventrally-derived Shh. The second wave occurs in the 
dorsal neural tube. It is transcriptionally regulated by 
Ascl1 and Dbx1 and requires upregulation of fibroblast 
growth factor (FGF) signaling and downregulation of 
bone morphogenetic protein (BMP) signaling. FGF func-
tions via activation of its tyrosine kinase receptors which 
leads to modulation of cellular proliferation, migration, 
and differentiation, whereas BMP, being a member of 
the transforming growth factor beta superfamily, plays 
a crucial role in regulating apoptosis during embryonic 

development [99, 149]. The third and final wave of GRP 
generation in the spinal cord occurs neo- and postna-
tally. Origins are unclear: those GRPs might derive from 
progenitors remaining within the central canal or from 
precursors dispersed throughout the parenchyma [39]. 
Notably, cells originating during the first wave are con-
sidered redundant and may be postnatally eliminated; 
however, they can survive and replace GRPs born in later 
stages if necessary [63].

Our detailed knowledge about hGRP ontogenesis is 
limited. However, as demonstrated in a landmark work by 
Sim and colleagues using flow cytometry, it is known that 
during neural development of the human forebrain, glial-
restricted progenitors with oligodendrocyte-generating 
potential are detectable from 16–18  weeks of gestation 
(Fig.  1) [142]. Meanwhile, recently, Fu et  al. have shed 
more light on the development of glial progenitors using 
single-cell RNA sequencing. The authors have shown that 
the population of EGFR+ cells contains a large fraction of 
progenitors from different lineages and that during the 
development of the human cerebral cortex, the expres-
sion of EGFR drastically increases at the start of gliogen-
esis (after gestational week 20). Moreover, the fraction 
of glial progenitors was markedly enriched after EGFR 
sorting during the switch from neurogenesis to gliogen-
esis [32]. Postnatally, GRPs can be found throughout the 
entire adult CNS, constituting around 8–9% of the whole 

Fig. 1  Comparison between different stages of neurodevelopment in mice and humans from the context of glial-restricted progenitors (GRPs)
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white matter and 2–3% of the grey matter cell pools. This 
makes them the fourth-largest population of glial cells 
after astrocytes, microglia, and oligodendrocytes [22].

Phenotype
The origin of studies on glial progenitor development 
dates back to the 1980s when Raff and colleagues 
described the oligodendrocyte-type-2-astrocytes (so-
called “O-2A” cells) in the rat optic nerve. These newly 
discovered entities could generate cells resembling 
astrocytes or oligodendrocytes in rats [128] and neu-
rons in humans [116]. With their differentiation capa-
bilities, bi-potential morphology, and high mitotic 
activity, GRPs were identified by one of their membrane 
epitopes–neural/glial antigen 2 (NG2), also known as 
chondroitin sulfate proteoglycan type 4 (CSPG4). This 
integral membrane protein is expressed in most non-
neural cells in the CNS, is implicated in cell migration, 
proliferation, and modulation of neural plasticity, and 
contributes to the dynamic regulation of the neural 
microenvironment [128]. Another vital characteris-
tic of neuronal and glial progenitors is the expression 
of A2B5. This surface ganglioside affects cell adhe-
sion, migration, and differentiation during neuronal 
development and myelination, and is widely adopted 
in antibody-based cell purification assays [116, 129]. 

It is, however, of note that neither NG2 nor A2B5 are 
expressed exclusively on the GRPs’ surface. As men-
tioned, A2B5 is also expressed on neuronal progeni-
tors, whereas NG2 can be found on pericytes [120]. A 
vital characteristic specific to GRPs is the expression of 
platelet-derived growth factor α receptor (PDGFαR), 
also known as CD140a. Activated by its ligand PDGFα, 
PDGFαR plays a central role in cellular processes like 
cellular migration and proliferation, particularly in the 
context of embryonic development, and is currently 
regarded as the only antigen expressed exclusively on 
GRPs of human CNS and is, therefore, among the most 
suitable targets for GRPs identification [142] (Fig.  2). 
Additionally, developed GRPs restricted only to oligo-
dendrocytic lineage can be recognized by anti-O4 anti-
bodies [144].

GRPs are highly migratory and maintain their unique 
territories through self-avoidance. They extend sizeable 
filopodia, which retract following contact with exten-
sions from the same or adjacent GRP cell (Fig. 2). Due to 
a proliferative phenotype, they can continuously restore 
their pool, migrate to and settle within the sites of focal 
injury, and partake in regeneration. Those characteris-
tics account for GRPs’ extraordinary capacity to maintain 
glial homeostatic balance [53], translating into the poten-
tial basis for cell replacement therapy.

Fig. 2  Characteristics and functions of glial-restricted progenitor cells (GRPs)
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Functions
GRPs are the primary source of new oligodendrocytes in 
the adult brain. In turn, oligodendrocytes produce mye-
lin, a specialized membrane consisting primarily of pro-
teins and fatty acids. Myelin wraps around the nerve axon 
in a spiral fashion and provides electrical insulation, thus 
facilitating signal transmission across the nervous system 
[130]. Loss of myelin sheath is commonly attributed to 
numerous neural diseases and axonal damage. Although 
spontaneous remyelination with endogenous oligoden-
drocytes occurs, the restored myelin layer is usually thin-
ner and provides weaker signal conduction [14, 143]. 
Aside from their myelinating activity, oligodendrocytes 
also play a vital role as metabolic supporters for neurons 
through lactate secretion [75]. Interestingly, GRPs can 
also generate Schwann cells in the CNS under certain 
conditions [190]. In specific diseases and experimental 
conditions, GRPs can generate type-1 and type-2 astro-
cytes, yet in modest numbers, incomparable to those 
generated via the direct proliferation of existing ones 
[159, 190]. Despite that, some works revealed the benefi-
cial effects of transplanted, more developed glial-derived 
astrocytes (GDAs) from rats and humans on axonal 
growth and neuroprotection [20, 21]. It is worth noting 
that, in in  vitro conditions and after reintroduction to 
the brain via transplantation, adult hGRPs can also give 
rise to neurons [116]. It was proven that neurons could 
differentiate from a small subset of rodent GRPs without 
external manipulation, yet in a relatively modest fashion 
[42, 133]. GRPs can establish synaptic transmission with 
GABAergic and glutamatergic neurons, possibly affecting 
the activity of neuronal circuits [12, 84].

Recent studies have shown GRPs’ ability to be involved 
in the immune response by expressing MHC class II, act-
ing as antigen-presenting cells, and activating effector 
and memory CD4+ T-cells [27]. Therefore, the range of 
potential therapeutic utilities for GRPs is truly compel-
ling (Fig. 2).

Sources of GRPs
The second step in utilizing cells’ therapeutic potential 
is finding their most safe, reliable, and efficient source. 
Therapeutic GRP sources should be easily accessed in an 
appropriate quantity and present a significant potential 
for glial differentiation. In addition, the derivation pro-
tocol should be relatively prompt and affordable. Finally, 
the procedure should not raise ethical concerns [37, 
38, 119]. Various sources of GRPs have been described, 
including direct isolation from embryonic, fetal, or post-
natal neural tissues, direct- or indirect cellular repro-
gramming from somatic cells (induced pluripotent stem 
cells; iPSCs), or targeting other endogenous stem cells 

(Fig. 3). Below is a review of the most commonly utilized 
sources of therapeutic GRPs considering their availabil-
ity, efficiency, and safety of the protocol.

Embryonic stem cells
Embryonic stem cells are pluripotent cells derived from 
embryos’ undifferentiated inner cell mass at the blasto-
cyst developmental stage. Their pluripotency is defined 
as an intrinsic ability to differentiate into cells of all three 
germ layers: endoderm, mesoderm, and ectoderm. ESCs 
are also capable of self-replicating indefinitely, making 
them a potent source of cells for scientific and therapeu-
tic purposes [93]. As shown by Brüstle and colleagues, 
GRPs can be derived in  vitro from human embryonic 
stem cells directly. After aggregating into embryoid 
bodies (EBs; three-dimensional aggregates of pluripo-
tent cells) and sequentially culturing hESCs in  vitro in 
a defined medium containing, firstly, basic fibroblast 
growth factor 2 (FGF2); secondly, FGF2 and epidermal 
growth factor (EGF), and thirdly, FGF2 and platelet-
derived growth factor (PDGF), proliferating cells with 
bipolar morphology, immunoreactive to A2B5 antibody, 
started to form. Eventually, when the growth factors were 
removed, cells differentiated into oligodendrocytes and 
astrocytes, confirming their bipotential phenotype [15].

Numerous other studies also proved the successful 
generation of hOPCs from hESCs. Most of these works 
rely on recapitulation of embryonic development, where 
functional glial progenitors are generated from pluripo-
tent stem cells based on sequentially delivered signals. 
These include Shh, FGFs, retinoids, insulin growth factor 
(IGF), and thyroid hormone (TH). Nistor et al. obtained 
over 80% efficiency in generating oligodendrocyte pre-
cursors after 42  days of Matrigel-based hESCs culture 
[113]. Other groups utilized feeder layers to culture ESCs, 
including mouse embryonic fibroblasts (MEFs) [35, 51, 
54, 61] and more clinically-relevant, human foreskin 
fibroblasts (HFFs) [52, 150, 151]. Most of these works 
delivered hOPCs from ESCs between 40 and 90  days, 
with 80–90% efficiency. Some modern approaches for 
deriving hOPCs from ESC included utilizing synthetic 
growth surfaces, such as vitronectin-derived synthetic 
peptide acrylate [83], and hydrogel-based, 3D cell cul-
ture systems [134] for a more scalable, clinically-relevant 
strategy.

It is, however, worth noting that despite their proven 
potential, hESCs isolation still requires sacrificing a living 
embryo, which again carries a significant ethical burden. 
Moreover, their unlimited proliferating potential creates 
a substantial risk of uncontrollable tumor formation after 
transplantation. Finally, ESC-based cell therapy still poses 
the risk of allograft rejection, imposing immunosuppres-
sion in transplantation recipients [172].
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Fetal and post‑natal neural tissue
Initially, GRPs were isolated from rat primary cell cul-
ture. Using fresh E13.5 rat spinal cords, a 6-day neu-
roepithelial cell culture was established, followed by 
anti-A2B5 monoclonal antibody-based immunopan-
ning. Isolated cells demonstrated high (> 90%) viability 
and both astrocyte- and oligodendrocyte differentiation 
potential [129]. Further studies also proved the suc-
cessful generation of GRPs from adult human brain tis-
sue after resection, where fluorescence-activated cell 
sorting (FACS) based on CNP2 promoter generated a 
small (< 0.5%) population of bipotential A2B5+ positive 
hGRPs [135]. Other works have shown derivation from 
adult human tissue GRP cells with even broader line-
age potential of generating not only astrocytes and oli-
godendrocytes but also neurons [116]. Finally, hGRPs 
were also derived from human fetal tissue [77, 165, 
173, 174]. However, to increase the purity of gliogenic 
hGRPs, the other selection was required. With A2B5-
positive selection, PDGFαR epitope CD140a was also 
targeted, generating a small fraction of more molecu-
larly defined, self-renewing bipotential progenitors 

with astrocytic and oligodendrocytic differentiation 
potential [142]. It is, however, worth mentioning that 
endogenous GRP cells are not all necessarily homog-
enous. In fact, from a molecular standpoint, they rep-
resent a substantially heterogeneous pool in rodents 
[92] and humans. Moreover, when adult and fetal GRPs 
were compared, three separate subsets of hGRPs could 
be distinguished: I. A2B5+, O4−, MOG−; II. A2B5+, 
O4+, MOG−; III. A2B5−, O4+, MOG− in the fetal brains 
and: I. A2B5+, O4−, MOG-; II. A2B5−, O4+ (with low 
expression profile), MOG−; III. A2B5+, O4+ (with high 
expression profile), and MOG+ in GRPs isolated from 
the adult. Indeed, adult hGRPs demonstrate low to 
undetectable expression of miRNAs highly expressed in 
O4− fetal GRPs [76]. Also, from an ethical standpoint, 
fetal neural tissue is still not a feasible source of cells 
as it requires terminating the pregnancy. Meanwhile, 
GRPs from adult human tissue can only be directly 
obtained via resection, which is unjustifiable unless 
accompanying reasons, such as tumor surgery, occur. 
Therefore, although adult and human fetal tissues 
are a proven source of therapeutic GRPs, they do not 

Fig. 3  Sources of glial-restricted progenitor cells and their progeny
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overcome ethical issues related to the isolation of cells 
from living donors nor deliver cells with sufficient yield 
and homogenous phenotype.

Induced pluripotent stem cells
Induced pluripotent stem cells (iPSCs) are a relatively 
new source of ESC-like cells with pluripotent potential. 
Initially discovered by Yamanaka and Takahashi in 2006, 
the iPSC technology shook the scientific community, 
opening new avenues for stem cell research and therapy. 
In the original study, the introduction and overexpres-
sion of a defined set of four transcription factors (Oct4, 
Sox2, Klf4, c‐Myc) via virally-delivered vectors in a dif-
ferentiated somatic cell, led to its forced reprogramming, 
resulting in the induction of pluripotency. Obtained cells 
resembled ESCs concerning their constitutive telomerase 
activity, in  vivo teratoma-formation capability, ability to 
remain undifferentiated in an in vitro cell culture, and dif-
ferentiate into cells of all three germ layers. Importantly, 
as iPSCs can be obtained directly from somatic cells, they 
do not carry the ethical burden of embryonic stem cells. 
Moreover, iPSCs technology allows for the generation of 
patient-derived therapeutic cells for autologous trans-
plantation, hence overcoming the risk of graft rejection 
[152, 153]. iPSCs were already successfully differentiated 
into a wide variety of cells including, but not limited to, 
primary cells of the neural lineage: neurons [171], astro-
cytes [69], microglia [104], and oligodendrocytes [51].

Still, it was not before 2013 that the team led by Steve 
Goldman first successfully differentiated hiPSCs into 
oligodendrocyte progenitors. The established protocol 
was based on utilizing FGFs, and retinoids, followed by 
Shh stimulation and final activation by PDGF, IGF, and 
TH, and stepwise involved: step I: Formation of embry-
oid bodies; step II: Neuroepithelial differentiation; step 
III: Mechanical detachment and suspension culture; step 
IV: Glial differentiation, followed by gradual generation 
of hOPCs. hiPSC-derived hOPCs readily differentiated 
into astrocytes and oligodendrocytes both in  vitro and 
in  vivo. Finally, unlike iPSCs, differentiated hOPCs did 
not display tumorigenic potential. However, since iPSCs 
technology requires the cell to recapitulate all its major 
developmental stages, the time span of 110 days needed 
for successful hOPCs generation seems significant. Nota-
bly, reprogramming efficiency rose as time progressed, 
reaching its maximal level of 79.5 ± 8.5% on around day 
150, significantly higher than for hESC-derived OPCs 
(45.4 ± 20.3%) [169]. Subsequent optimizing studies on 
iPSC-derived hOPCs included work by Douvaras and 
Fossati, which implemented immediate retinoids-stimu-
lated Matrigel-based cell culture and shorter Shh exposi-
tion. As a result, it allowed for generating hOPCs more 
rapidly (on around day 50), with 43% efficiency on day 

75 [26]. Next, a group led by Zhiguo Chen successfully 
reprogrammed human iPSCs to hOPCs through forced 
expression of virally delivered Sox10 and Olig2 TFs. 
Notably, around 45% of cells displayed PDGFαR+ phe-
notype after just 14 days, with O4+ cells present as early 
as day 56, signifying oligodendrocytic lineage restriction 
of hiPSCs-derived cells [81]. In other works, culturing 
human iPSCs in a dissociated monolayer and feeder-free 
culture system combined with FGF2, PDGF-AA, and Shh 
stimulation generated hOPCs from around day 85. Nota-
bly, developed OPCs could be cryopreserved, thawed, 
and re-plated, further facilitating their clinical use [182].

Although indirect reprogramming using iPSC tech-
nology is promising for disease modeling and creating 
patient-derived therapeutic cells, there are still major 
concerns. First, if a non-differentiated iPSC accidentally 
remains within the differentiated cells pool and is trans-
planted concomitantly, it may cause tumorigenesis due to 
still highly active protooncogenes [96, 118]. And second, 
indirectly reprogrammed cell likely retains the epigenetic 
memory of the mother cell used for initial iPSC genera-
tion, which could hinder its full commitment to the new 
phenotype [65, 72, 162].

Despite its enormous potential, iPSC technology still 
imposes significant risks if applied to the clinic. An ideal 
strategy would be delivering autologous therapeutic 
cells without passing through the pluripotent cell state, 
through direct reprogramming or transdifferentiation 
[29, 139].

Directly reprogrammed somatic cells
Countless studies have already proved the successful gen-
eration of various somatic cells directly from fibroblasts 
via defined transcription factors (TFs), including, but not 
limited to, neurons [16, 164], astrocytes [17], and neural 
stem/precursor cells [86, 156]. Importantly, in 2013 two 
independent groups demonstrated the successful genera-
tion of OPCs from somatic cells by virally delivered TFs. 
The first team, led by Paul J. Tesar, utilized a set of eight 
transcription factors: Olig1, Olig2, Nkx2.2, Sox10, ST18, 
Nkx6.2, Myrf, and Myt1 to transdifferentiate mouse 
fibroblasts into OPCs with ~ 9.2% efficiency after 21 days 
[105]. The second group, led by Marius Wernig, used a 
combination of three TFs: Sox10, Olig2, and Zfp536, 
which proved sufficient to reprogram mouse and rat 
fibroblasts into OPCs with 15.6 ± 3.3% effectiveness after 
3  weeks [184]. Further studies demonstrated successful 
generation of OPCs from astrocytes in vitro and in vivo 
via overexpression of a single TF: Sox10 [101] or Sox2 
[28].

Although successful direct conversion of various 
somatic cells to GRPs is possible with virally deliv-
ered TFs, this approach still poses a significant risk of 
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mutagenesis in the recipient cell. Therefore, other non-
integrative methods were tested, including the delivery 
of small molecules with epigenetic activity, such as Tri-
chostatin A (TSA), which successfully generated GRPs 
from mouse and human astrocytes [189]. Unfortunately, 
such factors are generally considered non-specific. Other 
approaches included simultaneous delivery of nine mol-
ecules (retinoic acid, SMER28, LDN193189, Hh-Ag1.5, 
CHIR99021, RG108, A83-01, Parnate, and bFGF) for con-
version of mouse fibroblasts into OPCs [85]. Reprogram-
ming efficiency was comparable to previous TF-based 
studies [105, 184]. Recently, based on a safe and precise, 
non-viral CRISPR/Cas9 system, a set of three TFs (Sox10, 
Olig2, and Nkx6-2) successfully reprogrammed mice 
fibroblasts into OPC-like cells. Although reprogram-
ming efficiency could not be accurately quantified, the 
authors claim that if vector integration and transfection 
efficiencies were enhanced, the final transdifferentiation 
efficiency using CRISPR/Cas9 could exceed that of the 
viral-based approach [95].

To sum up, although direct reprogramming overcomes 
most drawbacks related to iPSC technology, further opti-
mizations are still needed to deliver cells with clinically 
adequate efficiency.

Other endogenous stem cells
Even though the directly isolated fetal and adult GRPs 
are proven sources for cell therapies, their initial quantity 
and overall expansion potential are minimal. Also, from 
a practical perspective, the interventional window for 
direct isolation is narrow, cell heterogeneity is substantial, 
and many ethical issues are related to obtaining material 
from living donors, be it fetuses or adults. Endogenous 
stem cells may be promising candidates for cells of origin 
with the molecular potential to differentiate into GRPs. 
Below, stem cells most commonly differentiated to GRPs 
with therapeutic potential are described, NSCs and mes-
enchymal stem cells (MSCs).

Neural stem cells
Neural stem cells (NSCs), also known as B-type cells, 
are multipotent cells derived from the radial glia of the 
developing CNS. They demonstrate a highly mitotic 
phenotype and can generate neurons, astrocytes, and 
oligodendrocytes via asymmetric cell division. During 
development, NSCs are present within the transient ven-
tricular zone (VZ). In contrast, during adulthood, NSCs 
can be found within three distinct regions of the CNS: 
the subventricular zone of lateral ventricles (SVZ), the 
subgranular zone of the hippocampus (SGZ), and the 
olfactory epithelium (OE). NSCs are traditionally divided 
into mitotically quiescent B1-type cells and highly prolif-
erative B2-type cells, giving rise to, among others, GRPs. 

The latter are generated before activation, which is driven 
by distinct cues including neurodegeneration, thus main-
taining the molecular balance between differentiation 
and self-renewal [11, 33, 79, 125, 155].

Glial progenitors derive from primary NSCs during 
ontogenesis [138]. Therefore, de novo derivation of GRPs 
from adult NSCs relies on their stimulation with factors 
present during embryonic development towards glial 
lineages, such as FGF and Shh. In addition, protocols for 
generating GRPs from other sources may pass through 
the NSC stage [74].

It was shown that activation of Shh signaling in NSCs 
promotes their glial differentiation, as demonstrated by 
NG2+/Olig2+ OPCs [111]. Furthermore, sole EGF stim-
ulation of NSCs spheres resulted in the generation of 
OPCs [193]. More modern works have shown that utiliz-
ing Shh or Smoothened Agonist (SAG), bFGF and PDGF-
AA can generate OPCs from NSCs in less than a week 
with around 90% efficiency [82]. Recently, it was shown 
that inhibition of the Shh transcription factor Gli1 by 
GANT61 in NSCSs generated OPCs more prone towards 
oligodendrocytic differentiation and of a more migratory 
phenotype [106]. Also, overexpression of Zfp488, a factor 
in newly formed oligodendrocytes and involved in their 
maturation, in NSCs restricted them towards OPC line-
age [13].

NSCs can easily give rise to GRPs after direct trans-
plantation, as shown by multiple studies [103, 160, 180, 
181]. Their glia-generating potential is so significant that 
“global glia replacement” was first used to describe the 
profound regenerative effect NSCs transplantation had 
on congenitally hypomyelinated shiverer mice [183].

Despite their enormous therapeutic potential, exog-
enous NSCs carry a similar burden as ESCs, not easily 
accessible tissue sources. Also, after in vivo delivery, their 
further development relies on endogenous molecular 
cues, which in a pathological state may hamper glial dif-
ferentiation [132, 154].

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) are a population of 
multipotent stem cells with broad differentiation poten-
tial [4, 6]. Minimal criteria defined in 2006 by the Mes-
enchymal and Tissue Stem Cell Committee of the 
International Society for Cellular Therapy qualify MSCs 
as cells that: (i) are plastic-adherent in standard in vitro 
culture conditions, (ii) express CD105, CD73, and CD90, 
but no CD45, CD34, CD14 or CD11b, CD79α or CD19, 
and HLA-DR surface antigens, (iii) can differentiate 
in  vitro into adipocytes, osteoblasts, and chondrocytes 
[24].

Depending on the desired application, MSCs can be 
isolated from many sources, among which the placenta 
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umbilical cord-derived Wharton’s jelly (WJ) seems par-
ticularly appealing for neural tissue regeneration [41, 
115]. Indeed, as shown by Zhang et al., WJ-MSC can be 
safely differentiated into OPCs via neurosphere forma-
tion, followed by a distinct combination of sequentially 
delivered trophic factors (including FGF2 and PDGF-
AA) instead of the hazardous introduction of exogenous 
genes. At peak point, 25.9% of differentiated OPC-like 
cells demonstrated PDGFR+ phenotype. However, 
despite similar morphology and phenotype, differenti-
ated oligodendrocytes finally secreted significantly fewer 
neurotrophic factors than hESC-OPCs-derived oligo-
dendrocyte counterparts, which may affect their clinical 
utility [191]. In other studies, sequential culturing of WJ-
MSCs with: i. Insulin Transferrin Selenium and Fibronec-
tin; ii. FGF2 and EGF; iii. FGF2 and PDGF-AA, resulted 
in 44.3% of cells expressing PDGFαR and 51.8% of cells 
expressing A2B5, two typical OPC markers [97].

Despite promising approaches, WJ is not necessarily an 
easily accessible source of therapeutic MSCs. However, 
other works have shown the successful generation of oli-
godendrocyte progenitors from relatively more available 
pools, such as human adipose-derived stem cells (hAD-
SCs), an abundant subpopulation of mesenchymal stem 
cells present in human fat tissue. In one study, after mul-
tiple passages and sequentially culturing hADSCs in dif-
ferentiation media consisting of, but not limited to, Shh, 
retinoids, neurotrophin-3 (NT3), and PDGFα, OPC-like 
cells with A2B5+ Olig2+ phenotype started to form with 
more than 90% efficiency. Unfortunately, no in vivo stud-
ies were described in this publication to verify the thera-
peutic potential of generated cells [34]. Finally, OPCs 
were differentiated from the dental pulp subpopulation 
of MSCs (hDPSCs) after exogenous delivery of the Olig2 
gene [7] or using similar factors as in the case of hADCs 
[34, 100].

The potential utility of MSCs in treating glial disorders 
goes beyond being just the source of OPCs. For example, 
it was shown that MSC transplantation could activate 
OPCs, induce their differentiation into mature oligoden-
drocytes and enhance myelinization via secretion of neu-
rotrophic factors [56] or by affecting the hosts’ immune 
response [9, 102]. Interestingly, even a sole conditioned 
medium from MSC culture can promote endogenous 
OPC proliferation [8].

It is, however, of note that a more precise characteri-
zation of MSC-derived oligodendrocyte precursor cells 
is needed. Furthermore, regardless of their source, MSCs 
represent a relatively heterogeneous cell pool, and their 
quality depends mainly on the isolation and culturing 
protocols, as well as the genetic background and medical 
history of the donor [87], which, by and large may affect 
their gliogenic and regenerative potential.

Why GRP engraftment is beneficial in CNS 
disorders?
Given that demyelinating diseases are one of the major 
burdens in today’s societies, recent research is focus-
ing on developing strategies that might improve the 
re-myelination process. Since deprivation of axonal 
myelin might also lead to neuronal degeneration [117], 
the loss of myelin might not only be related to demyeli-
nation but also be associated with many neurodegen-
erative disorders. Subsequently, it must be stressed that 
brain and spinal cord injuries are often accompanied 
by demyelination [187, 192]. Thus, it is understandable 
that the research is constantly evolving in response to 
the urgent need to discover the treatment method for 
CNS diseases. Recent studies more often emphasize 
the role of glia in both CNS physiology and pathology 
[70, 78, 165]. Moreover, it is more frequently stated that 
the degeneration of neurons is often an effect of dys-
functional glia and not the malfunctioning neuron per 
se [47, 75, 121]. More often, the critical role of astro-
cytes in CNS functioning is recognized. Those cells are 
known to have multiple tasks; however, in the context 
of direct neuron interaction, astrocytes take part in 
support of signal transmission, nutrition, energy supply, 
and homeostasis of neurons [123]. On the other hand, 
the second type of macroglia—oligodendrocytes—are 
responsible for energy supply, trophic support, ion 
channel organization, and myelination [2]. Due to the 
ability of glial progenitors to differentiate into both—
astrocytes and oligodendrocytes, GRPs grafting could 
have beneficial outcomes in both neurodegenerative 
and demyelinating disorders of the CNS. Considering 
the latter one, unfortunately, in most cases of endoge-
nous remyelination, even if it occurs, it seems to be not 
as efficient as expected. It is mainly due to the presence 
of only thin layers of newly generated myelin [31] that 
are thus not fully functional. Depending on the cause 
of injury, remyelination might be conducted by either 
resident mature oligodendrocytes that have survived 
the injury or glial progenitors that would migrate, pro-
liferate and differentiate into myelinating cells [31]. 
The surviving mature oligodendrocytes have, however, 
limited migrating capacity. On the other hand, the oli-
godendrocyte precursors were proven to be the source 
of myelinating oligodendrocytes and at least a fraction 
of Schwann cells after demyelinating injury [190]. The 
number and extent of endogenous progenitors might 
be the limiting factors; thus, it seems that the delivery 
of exogenous GRPs might additionally support endoge-
nous oligodendrocyte precursors. Indeed, several stud-
ies proved that transplantation of GRPs/OPCs might 
bring beneficial effects in the treatment of demyelina-
tion which will be explored in the next chapter.
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On the other hand, the critical role of astroglia in most 
of the neuronal functions, namely in homeostasis main-
tenance, role in signal transmission, blood–brain barrier 
(BBB) regulation, etc., is that pathology of astroglia might 
bring disastrous effects leading to consecutive neuronal 
degeneration. Therefore, GRP grafting to replace the mal-
functioning astroglia might also prove beneficial in treat-
ing neurodegenerative disorders like amyotrophic lateral 
sclerosis ALS or Huntington’s disease (HD), where glia 
failure was recently demonstrated to be a pathological 
feature [163].

Transplantation of GRPs as a therapeutic strategy 
for CNS diseases
Stem and progenitor cell therapies are implemented 
in many neurological disorders, including those with 
white matter injuries. Central white matter diseases 
are linked to glial cell dysfunction leading to the loss of 
myelin produced by oligodendrocytes. Demyelinating 
disorders of CNS develop motor and cognitive deficits, 
which places them among the most disabling and cost-
intensive neurological diseases. Therefore, in numerous 

therapeutic approaches, significant attention has been 
directed toward GRP transplantation for myelin repair 
and re-myelination. This strategy has been used in ani-
mal models of various demyelinating diseases such as 
leukodystrophies, hypomyelination, neurodegenerative 
diseases, and brain or spinal cord injury (Fig. 4) (Table 1).

Glial progenitor cell transplantation in leukodystrophies 
and hypomyelinating diseases
Leukodystrophies include hereditary defects in genes 
related to the induction of myelination, e.g., Pelizaeus-
Merzbacher disease, or several inborn errors of metabo-
lism, e.g., Sandhoffs, Tay-Sachs, Canavan’s or Krabbe’s 
diseases, leading to the myelin absence or loss. There 
are no representative experimental models of leukodys-
trophies. However, many current proof-of-concept stud-
ies for replacement therapy for demyelinating diseases 
are performed in congenitally hypomyelinated shiverer 
mice with a partial deletion in the myelin basic protein 
(MBP)-encoding gene [131]. In addition, several studies 
have proven that GRP transplantation into shiverer mice 

Fig. 4  Transplantation of glial-restricted progenitor cells as a therapeutic strategy for central nervous system diseases
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promoted efficient and functional myelination resulting 
in neurological recovery in myelin disorders (Table 1).

Over time, many populations of GRPs have been devel-
oped, either derived from fetal tissues or induced pluri-
potential stem cells isolated from patients. In addition, 
fetal hGRPs were often used as therapeutic vectors in 
animal models of congenital hypomyelination. To avoid 
xenogeneic graft rejection by the recipients, the studies 
were carried out on immunodeficient demyelinated mice.

Transplantation of fetal hGRPs in the forebrain of neo-
natal double mutant (shiverer/Rag2−/−) mice yielded 
exogenous cells spread throughout the brain and their 
differentiation into oligodendrocytes and astrocytes 
[173]. By 12  weeks after a single injection of hGRPs 
in neonates, compact myelin and axonal myelination 
were observed in the host brain. Moreover, when multi-
ple hGRP injections were introduced into the forebrain 
subcortex of neonatal shiverer immunodeficient mice, 
a more extensive cell spreading through the white mat-
ter of transplant recipients was observed. In this case, 
fetal hGRPs were delivered at four sites into the cor-
pus callosum and as a single injection into the cerebel-
lar peduncle of shiverer/Rag2−/− newborn mice. Grafted 
cells dispersed throughout the hosts’ brain and cervical 
spinal cord [174]. These mice revealed the donor-derived 
myelin, which ensheathed host axons in the brainstem 
and cervical spinal cord. Moreover, multiple transplanted 
mice exhibited prolonged survival with neurological 
defect improvement compared to non-treated shiverer 
mice. The long-term survival of hGRP recipients ena-
bled us to trace the process of cell treatment-associated 
recovery. The authors found that after 52  weeks from 
fetal hGRP implantation, 78% of axons in hypomyeli-
nated shiverer mice were myelinated. Interestingly, by a 
year after hGRP engraftment in neonatal demyelinated 
immunocompromised mice, all glial progenitors and 
a large proportion of oligodendrocytes and astrocytes 
in the host brain were of human origin [175]. The same 
group of authors showed that fetal hGRPs sorted for high 
expression of PDGFαR (CD140a+) transplanted into 
shiverer mice were highly migratory and myelinated the 
hypomyelinated mouse brain more rapidly and efficiently 
than did non-sorted cells [142]. It was observed that fetal 
CD140a+ hGRPs robustly differentiate in the host brain 
into myelinating oligodendrocytes. By 8  weeks from 
transplantation, the engrafted mice exhibited significant 
and widespread forebrain myelination.

The other studies conducted by Walczak group dem-
onstrated that fetal hGRPs injected bilaterally into the 
lateral ventricles of shiverer/Rag2−/− mouse neonates 
displayed extensive cell migration to the brain paren-
chyma with a propensity to localize within the white mat-
ter structures [88]. However, hGRPs-transplanted mice 

revealed sparse expression of MBP, and only a few mye-
linated axons were observed at early-time points. The 
myelination became widespread at 31  weeks, but only 
after 62 weeks after hGRP injection the number of axons 
ensheathing with structurally normal myelin compara-
ble with the pattern occurring in wild mice was found. 
Fetal hGRP graft significantly prolonged the survival of 
shiverer immunodeficient mice with a life span of over 
400 days in 48% of animals.

Recently, Goldman group has shown the positive effect 
of GRPs transplanted into adult mice. The homozygous 
Rag1−/− mice subjected to cuprizone demyelination were 
transplanted with hGRPs delivered bilaterally into the 
corpus callosum of 10-week-old graft recipients. The 
study’s results revealed that hGRPs effectively dispersed 
throughout the forebrain of adult mice, differentiated 
into oligodendrocytes and myelinated demyelinated 
axons [176]. This data suggests that fetal hGRPs are com-
petent to differentiate as oligodendroglia and myelinate 
denuded axons after their transplantation into adults, as 
they were able to perform remyelination when engrafted 
neonatally. These findings may provide a promising GRP-
based treatment in patients with progressive myelin loss 
diseases.

Walczak and co-workers compared the effect of trans-
planted human or mouse GRPs (mGRPs) into shiverer/
Rag2−/− newborn mice and observed the graft recipients 
for over one year. The results of their study have shown 
extensive bio-distribution of hGRPs throughout the 
entire mouse brain, however, with a prolonged process 
of their differentiation into mature myelinating oligoden-
drocytes. In contrast, grafted mGRPs were characterized 
by limited migration but fast differentiation correlated 
with myelination observed at 18 weeks after transplanta-
tion [88]. Paradoxically, mGRP-grafted in demyelinated 
mice failed to extend the animal survival despite exhibit-
ing a more pronounced presence of mature and compact 
myelin. Although, hGRP transplantation provided a bet-
ter therapeutic effect prolonging the life span in half of 
the hypomyelinated leukodystrophic mice compared to 
mGRP injection. The authors suggested that the thera-
peutic mechanisms of GRP transplantation are not lim-
ited solely to the role of myelinating oligodendrocytes.

Recently, canine GRPs (cGRPs) isolated from the brain 
of dog fetuses were implanted intraventricularly into 
the double mutant immunodeficient, demyelinated neo-
natal shiverer mice (shiverer/Rag2−/−) [147]. Mapping 
cerebral bio-distribution of cGRPs in the host brains 
revealed wide dispersion of donor cells in the ventricle 
lining hippocampus and neighboring midbrain. Further-
more, transplantation of cGRPs resulted in visible myeli-
nation of the corpus callosum as demonstrated by MRI, 
immunohistochemical analysis, and electron microscopy 
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visualization. Nevertheless, there were significant differ-
ences in myelination degree between transplanted ani-
mals, and the number of compact myelin visible during 
electron microscopy analysis was relatively sparse. Inter-
estingly, shiverer mice receiving cGRPs showed improved 
survival in some grafted animals when compared to non-
transplanted animals. The results of the studies have 
shown that intraventricularly injected cGRPs integrated 
into the brain of demyelinated mice and became func-
tional after their transplantation. However, similarly as 
in the studies of Walczak group, the survival benefit of 
cGRP transplantation in immunodeficient shiverer mice 
was independent of the myelination of the corpus callo-
sum in graft recipients.

Dooves et  al. [25] compared transplantation of three 
different mice glial progenitor cell populations in a 
mice model of leukodystrophy—vanishing white mat-
ter. The mixed GPCs population was first sorted based 
on A2B5 expression, cells of astroglial lineage—based on 
GLAST expression, and OPCs based on the expression of 
PDGFαR. Notably, all three populations successfully inte-
grated into the host tissue upon transplantation. No sig-
nificant changes were observed in the glial fate between 
the different GPC populations after transplantation. Allo-
geneic GPC grafting procedure led to selective motor 
skills improvements in the hosts. Interestingly, PDGFαR+ 
cells demonstrated significantly enhanced survival in vivo 
compared to A2B5+ and GLAST+ cells.

Human embryonic stem cell-derived OPC transplanta-
tion was shown to remyelinate the irradiated brain and 
rescue behavioral deficits in rats [124]. In this model, a 
50-Gy radiation dose is applied to decrease MBP expres-
sion, affecting all major white matter pathways in the 
brain of irradiated animals. Stereotactic bilateral injec-
tion of hESC-OPCs into the corpus callosum of nude 
rats 4  weeks after brain irradiation revealed donor cell 
migration throughout the major white matter tracts. 
Phenotypic analysis of the human cells surviving in the 
host brains demonstrated that they were mostly oligo-
dendrocytes at various stages of maturity. In addition, 
the proportion of myelin-ensheathed axons was signifi-
cantly increased in the grafted animals compared to the 
sham-operated radiation group. Finally, behavioral test-
ing showed complete recovery of cognitive function, and 
the concomitant transplantation of hESC-OPCs into the 
cerebellum manifested additional recovery from motor 
deficits observed in irradiated recipients.

To translate experimental data into clinical therapeu-
tic protocols, a sizeable pool of hGRPs would need to be 
generated. Therefore, the previously established method 
of induced pluripotent cells (iPSCs) reprogramming into 
neural progenitor cells (NPCs) was adapted to obtain 
GRPs. Wang and colleagues have found and standardized 

a protocol for producing bipotential astrocyte-oligo-
dendrocyte progenitor cells from human pluripotent 
stem cells [169]. In addition, the myelinating potential 
of human iPSC-OPCs has been investigated after their 
transplantation in the neonatal shiverer mouse model 
to compare their capacity to fetal brain-derived GRPs. 
It was found that human iPSC-derived OPCs grafted 
in the same experimental conditions in immunodefi-
cient shiverer mice maintained equal widespread migra-
tion and myelination capacity compared to human fetal 
GRPs. Although the transplantation of hGRPs induced 
myelination and led to improved survival and enhanced 
electrophysiological axon conduction in some shiverer/
Rag2−/− graft recipients, the functional recovery was not 
observed in the hosts.

The number of studies using rodent glial progeni-
tors for transplantation in leukodystrophies is relatively 
tiny. Kuai et  al. injected OPCs derived from mice ESCs 
into the forebrain of twitcher mice which are the animal 
model for human globoid cell leukodystrophy (Krabbe 
disease). It was shown that transplanted OPCs remained 
along the injection tract demonstrating limited migra-
tion abilities, and the number of donor cells significantly 
decreased on days 10th and 20th after injection. How-
ever, the short observation time caused by poor cell sur-
vival did not reveal significant behavioral improvements 
or prolongation of life span in engrafted twitcher mice 
[71].

The successful oligodendrocyte-based cell therapy was 
shown for pre-symptomatic arylsulfatase A (ARSA) null 
neonate mice, a murine model for human metachromatic 
leukodystrophy (MLD) [36]. Rat OLPs (rOPCs) engrafted 
into newborn MLD mice pups’ brains survived into 
adulthood of the hosts. Transplanted cells survived as 
MBP-positive post-mitotic myelinating oligodendrocytes 
and integrated within the white matter of adult MLD 
mice. OPC recipients had reduced sulfatide accumulation 
in the CNS, increased brain ARSA activity, and complete 
prevention from electrophysiological and motor deficits 
characteristic for untreated MLD mice.

Glial progenitor cell transplantation in neurodegenerative 
diseases
In contrast to congenital demyelinated disorders, called 
leukodystrophies, in adults, oligodendrocyte loss con-
tributes to neurodegenerative diseases or traumatic brain 
and spinal cord injuries. All of these are potential targets 
for GRP replacement therapy.

Glial progenitor cell transplantation in ALS
Amyotrophic lateral sclerosis (ALS) is a motor neuron 
disease resulting in progressive degeneration of the upper 
and lower motor neurons (MNs) in the motor cortex, 
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brain stem, and spinal cord. Despite the relative selec-
tivity of MN death in ALS, several experimental studies 
show glia involvement in the disease process. It was dis-
covered that glial cells, mostly astrocytes, are affected by 
ALS pathology, and they substantially affect MN function 
and survival. Therefore, therapeutically targeted astro-
cyte replacement via transplantation of glial progenitors 
seems to be of great interest. Some clinical cases of ALS 
have been linked to various point mutations in the Cu/Zn 
superoxide dismutase-1 (SOD1) gene. Transgenic SOD1 
G93A rodents successfully reproduce most clinical fea-
tures of ALS and have been extensively used to serve as 
models for experimental therapeutic trials.

To assess the effect of glial progenitor transplanta-
tion, rat GRPs were injected into the cervical spinal cord 
of adult SOD1 G93A rats [78]. The results of this study 
demonstrated that transplanted GRPs survived in dis-
eased tissue; however, the higher proportions of donor 
cells were located close to the injection site. Quantifica-
tion of the differentiation profile of transplanted GRPs 
by the end-stage of the disease depicted their efficient 
transition into GFAP+ astrocytes (87.9%). A small per-
centage of cells also differentiated into oligodendrocytes 
(8.6%). Attenuation of motor neuron loss and reduced 
microgliosis in SOD1 G93A rat cervical spinal cord was 
observed in the GRP graft recipients, followed by slowed 
fore-limb and respiratory function declines compared to 
control animals.

As an extension of the previous study, the same authors 
investigated the effect of fetal hGRPs in the SOD1 G93A 
mouse model [46, 77]. hGRPs transplanted into the cer-
vical spinal cord of immune-suppressed adult SOD1 
G93A mice were found to survive in the host early in 
observation. The donor cells migrated both in grey 
and white matter and differentiated into astrocytes in 
the spinal cord of the graft recipients. Compared with 
rGRPs, the hGRPs showed much less differentiation 
into mature astrocytes. Moreover, the hGRP graft did 
not show any beneficial therapeutic effects. The lack of 
efficiency in motor and respiratory functional outcome 
may be due to the poor long-term survival of hGRPs. 
The authors demonstrated that hGRPs did not survive 
in SOD1 G93A mice until the disease end stage, despite 
immunosuppression.

Recently, Stanaszek and co-workers have developed an 
immunodeficient model of ALS (double mutant SOD1/
Rag2−/− mice) [89] to test the strategy of hGRPs trans-
plantation [148]. Unfortunately, intraventricular implan-
tation of hGRPs into SOD1/Rag2 mice neonates was 
not associated with improved animal survival, slowing 
neurodegeneration progression, or accumulation of mis-
folded superoxide dismutase 1. Furthermore, postmor-
tem analysis did not reveal any surviving GRPs in the 

host brain at the end stage of the disease (150–200 days 
after transplantation).

Interestingly, glial-rich neural progenitors derived 
from human iPSCs (hiPSC-GRNPs) transplanted into 
the lumbar spinal cord of ALS model mice prolonged 
the life-span of graft recipients and improved clinical 
scores of lower limbs [67]. Transplanted cells expressed 
GFP reporter; thus, the authors could examine the donor 
cells’ fate. Around 60–80% of hiPSC-GRNPs donor cells 
differentiated into astrocytes. Quantitative RT-PCR 
revealed upregulated expression of neurotrophic factors, 
i.e., VEGF, GDNF, and NT-3, in the lumbar spinal cord 
of transplanted mice. These factors were both of donor 
and host origin, which suggests that rather than just 
being direct, the neuroprotective role of hiPSC-GRNPs 
in motor neuron loss in SOD1 G93A mice might also be 
demonstrated indirectly.

Glial progenitor cell transplantation in MS disorders
Glia progenitor transplantation aims not always to 
replace affected cells but to modulate the microenviron-
ment to improve oligodendrocyte maturation and repair 
the white matter. It was shown by transplantation stud-
ies in the experimental autoimmune encephalomyelitis 
(EAE), an animal model for multiple sclerosis (MS) where 
grafted cells released immunomodulatory factors that 
improved the disease symptoms [126].

Multiple sclerosis is an autoimmune disease caused by 
inflammatory attacks against myelin in the CNS. Previ-
ous reports have shown the cell-intrinsic loss of myeli-
nation competence by endogenous GRPs as the basis for 
remyelination failure in progressive MS disorders [109, 
110].

Transplanting glial-committed progenitor cells into a 
viral model of MS-induced remyelination in mice chroni-
cally infected with mouse hepatitis virus (MHV). Injec-
tion of mGRPs into the spinal cord of MHV-infected 
mice resulted in widespread remyelination and axonal 
sparing within the ventral and lateral columns com-
pared to non-transplanted animals [158]. Furthermore, 
mGRP grafting contributed to behavioral improvement 
in locomotor abilities, whereas control MHV-infected 
mice remained completely paralyzed. Interestingly, 
Hardison et  al. study demonstrated that mGRP-medi-
ated remyelination was not the result of inflammation 
evoked by virus-specific T cells [49]. Instead, it suggests 
that remyelination can occur within the inflammatory 
microenvironment. Indeed, several studies indicate that 
inflammation enhances transplanted cells’ survival and 
migration.

Recent findings reveal that OPCs undergo a state 
change in MS and lose the ability to differentiate and 
replace lost oligodendrocytes [19]. These observations 
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led to using exogenous glial progenitors in re-myelinating 
therapies to repair MS lesions.

The behavior and myelinogenic properties of trans-
planted glial progenitors have been demonstrated in dif-
ferent animal models of MS. Kim and colleagues have 
shown that OPCs derived from human embryonic cells 
transplanted in the ventricles of EAE mice revealed a sig-
nificant improvement in neurological scores compared 
to non-transplanted animals. The positive results of 
transplanted OPCs are probably related to their immu-
nomodulatory effect since the restriction of infiltrating 
CD45 cells was noted within the subarachnoid space in 
graft recipients [64]. Similarly, transplantation of OPCs 
derived from human Wharton’s jelly MSCs into the brain 
ventricles of mice with EAE after acute relapse of the 
symptoms significantly reduced the clinical signs of the 
disease [97]. In addition, histological sections from the 
corpus callosum of OPCs transplanted mice have shown 
the attenuation of demyelination severity observed in 
vehicle-infused control animals.

Glial progenitors inhibit the progression of EAE dis-
ease. It was found that human Olig2+ precursor cells 
derived from embryonic NSCs injected intracerebroven-
tricularly in Biozzi AB/H mice, a chronic model of MS, 
reduced neuroinflammation, demyelination, and axonal 
loss in the cervical spinal cord, as compared to controls 
[112]. The donor cells were observed in the lateral ventri-
cles and along the surface of the spinal cord 1 month after 
transplantation; however, they remained as glial pre-
cursors and did not express specific markers for mature 
oligodendrocytes. These findings suggest donor cells’ 
bystander immunomodulatory and protective effects by 
attenuating demyelination and axon injury in EAE mice.

In addition to classic myelin disorders, i.e., ALS and 
MS, oligodendrocyte loss also contributes to other CNS 
diseases linked to brain or spinal cord injuries in adult 
patients. All of these conditions are potential targets for 
glial progenitor cell replacement therapy.

Glial progenitor cell transplantation in brain injuries
Brain injuries exhibit diverse neurobehavioral symp-
toms caused by the deprivation of oxygen supply leading 
to neuronal degeneration in the hippocampus. In addi-
tion, the white matter in the brain is affected as ischemia 
brings about oligodendrocyte death, myelin damage, and 
axon dysfunction, which are the primary cause of long-
term cognitive impairment. The different experimen-
tal studies reveal that among stem cells transplanted in 
traumatic brain injury (TBI) disorders, glial-restricted 
progenitors show regenerative promise for replacing 
damaged cells and reducing neuroinflammation.

Transplantation of fetal mouse GRPs into lateral ven-
tricles of newborn mice followed by TBI induced by 

controlled cortical impact 12  weeks after cell graft 
revealed colonization of donor cells in periventricular 
structures of the brain in adult mice [168]. In addition, 
MRI and histological results depicted the reduction in 
TBI lesion volume observed in GRP-transplanted mice 
in contrast to non-transplanted animals. These findings 
support the possibility of GRPs facilitating tissue repair 
by proliferating and migrating to the injury site. Further-
more, a less pronounced ratio intensity for CD45+ leuko-
cytes in the local inflammatory infiltrates associated with 
TBI was observed in the GRP transplantation group, sug-
gesting that the donor GRP engraftment inactivates the 
adaptive immune response induced by traumatic brain 
injury in the host brain.

A recent study by Salikhova et  al. has also shown the 
anti-inflammatory effect of human iPSC-derived GRPs in 
rat middle cerebral artery occlusion (MCAO) model of 
ischemic stroke. The conditioned media (CM) of human 
iPSC-derived GPRs (GRP-CM) transplanted intra-arteri-
ally into the adult MCAO animals reduced macrophage/
microglia infiltration and pro-inflammatory cytokine 
TNF-α gene expression and, at the same time, increased 
the expression of anti-inflammatory cytokine genes IL-4, 
IL-10, IL-13 within the brain damage area [137]. Fur-
thermore, intra-arterial infusion of GRP-CM to MCAO 
stroke rat model promoted the alleviation of neurological 
deficits and enhanced functional recovery within 30 days 
of observation. Moreover, the administration of GRP-CM 
induced blood vessel formation in the damaged brain tis-
sue indicating pro-angiogenic properties of GRP-secret-
ing factors.

Wu’s group investigated the long-term effect of OPC 
transplantation in a rat model of white matter injury 
established by the right common carotid artery ligation 
and hypoxia [177]. Human fetal OPCs injected into the 
lateral ventricle or white matter of 5-day-old hypoxic 
rat pups demonstrated thick myelin sheath and reduced 
structural damage in the brain compared with control 
animals, observed in the hosts at the age of 90  days. In 
addition, the transplanted rats had significantly higher 
modified neurological severity scores than the sham-
operated group, suggesting the OPC graft’s therapeutic 
effect.

An experimental model of periventricular leukomala-
cia showed the positive effect of human oligodendrocyte 
progenitor cell transplantation on improving neurobe-
havioral deficits in rats. In the study of Kim and cow-
orkers, hOPCs were transplanted intraventricularly into 
7-day-old neonatal rats subjected to hypoxia/ischemia/
lipopolysaccharide (HIL) injection [66]. It was found 
that the donor OPCs migrated to the injured white mat-
ter area and survived more than 5 weeks in the brain of 
graft recipients and markedly preserved host MBP. Most 
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importantly, transplanted animals demonstrated ame-
liorated locomotor and cognitive deficits of non-trans-
planted HIL rats.

It was reported that hOPCs infused intravenously in 
the aged gerbils following experimental ischemic stroke 
improved short-term memory and cognition deficits 
observed in animals after transient cerebral ischemia [1]. 
Interestingly, despite the donor cells not being found in 
the host’s hippocampal parenchyma, MBP expression in 
this brain structure was apparently increased compared 
to the no transplanted ischemic groups. Furthermore, 
the BDNF level in the dentate gyrus of the graft recipi-
ents was much stronger than that in the vehicle-treated 
ischemia animals. This finding suggests that even if trans-
planted hOPCs do not enter the brain, they may benefit 
stroke disorders in term of their rehabilitation.

Deng group established the method to obtain Olig2+ 
progenitor cells derived from human embryonic stem 
cells (hESCs), which generate a subtype of astroglia 
(Olig2PC-Astros) with protective effects against ischemic 
brain injury [57]. These Olig2PC-Astros transplanted 
into the brain of adult rats after global cerebral ischemia 
exhibited neuroprotective effects and improved behavio-
ral outcomes in graft recipients. Furthermore, at 2 weeks 
after transplantation, many donor cells survived in the 
ischemic brain and retained an astroglial phenotype. 
Moreover, the increased BDNF and MBP reactivity was 
observed in the hippocampal CA1 region of the host, 
which may contribute to the protective effects on neu-
rons against ischemic injury.

Rodent OPCs transplanted in experimental models 
of brain ischemia have also provided neurotrophic ben-
efits to surrounding impaired neural tissue. Mouse Olig2 
derived from embryonic stem cells grafted into the lateral 
ventricles of rat pups following hypoxic-ischemic (HI) 
injury migrated into the parenchyma of the host brain 
[18]. At 6  weeks after transplantation, the donor cells 
were detected in the corpus callosum and the perive-
ntricular white matter. Mouse OPCs differentiated to 
mature oligodendrocytes and formed myelin sheath. 
Moreover, transplanted mOPCs were seen in the host 
hippocampus subgranular zone, where higher neural 
stem cell proliferation, Bcl-2 expression, and BDNF reac-
tivity were observed in comparison to non-transplanted 
HI rats. It was found that mouse OPC transplantation 
reversed HI-induced spatial learning and memory defi-
cits in graft recipients.

Recently, it was shown that OPCs isolated from 
rat pups and injected into adult mice after transient 
MCAO alleviated brain edema and infarct volume in the 
graft recipients [167]. Moreover, OPC transplantation 
decreased BBB leakage induced by its disruption evoked 
in ischemic brain injured rats suggesting the protection 

of BBB integrity through OPC graft. Furthermore, trans-
planted animals revealed improved neurobehavioral 
recovery manifested in decreased neurological scores.

Similarly, transplantation of hESC-OPCs into the cor-
tex of nude rats subjected to diffuse traumatic axonal 
injury (Marmarou weight drop injury model) caused a 
massive migration of the donor cells to the corpus callo-
sum and adjacent white matter accompanied by progres-
sive maturation into oligodendrocytes that ensheathed 
host axons [179].

Glial progenitor cell transplantation in spinal cord injuries
Traumatic spinal cord injuries (SCI) involve cord com-
pression and immediate axon and cell damage. Then the 
secondary degenerative changes are observed, e.g., the 
loss of neurons, oligodendrocytes, and myelin. Demyeli-
nation contributes to the deprivation of motor and cogni-
tive functions, and thus, a potential therapeutic strategy 
involves replacing myelin-forming cells. In experimental 
studies, GRPs demonstrated a capacity to repair spinal 
cord damage, mainly through the supportive role associ-
ated with glial cells in the CNS.

Transplantation of fetal hGRPs into the contusion 
model of spinal cord injury in adult rats showed robust 
graft survival and extensive migration of donor cells at 
the lesion site. Fischer group studies have shown that 
fetal hGRP transplanted acutely into the cervical dorsal 
column lesion of the spinal cord in adult immunosup-
pressed rats survived in the injured spinal cord, filling the 
lesion site [44, 45]. Interestingly, the phenotypic analysis 
revealed that most of the animals’ grafted cells differen-
tiated into astrocytes, as characterized by the expression 
of GFAP. The generated permissive astrocytes supported 
axon growth and promoted regeneration of long ascend-
ing host sensory axons into the graft/lesion site. Jin 
et  al. investigated the fate of transplanted hGRPs using 
athymic rats to circumvent xenograft immune issues 
[58]. The studies also revealed that grafted cells differ-
entiated into glia, predominantly astrocytes, but there 
were few hGRPs-derived oligodendrocytes at the lesion 
site. It seems that transplantation of GRPs, which mainly 
produced astrocytes in vivo, generated a permissive envi-
ronment and showed protective effects concerning sec-
ondary injury.

Walczak’s group observed that fetal hGRPs trans-
planted into the spinal cord of adult rats with an inflam-
matory demyelination model expanded within the 
inflammatory spinal cord lesion and adopted a mature 
glial phenotype [165]. Moreover, transplanted rats exhib-
ited preserved electrophysiological conduction across 
the spinal cord. However, the authors did not notice any 
behavior improvement in the focally demyelinated host 
after hGRP transplantation.
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Few attempts have been made regarding allogeneic 
GRP transplantation in spinal cord injury rodent models. 
Han and co-workers examined the fate and migration of 
grafted fetal GRPs isolated from transgenic animals and 
transplanted into the injured spinal cord of adult rats 
[48]. Transplanted rGRPs survived for at least 6 weeks in 
the host spinal cord and differentiated along astrocytic 
and oligodendrocytic lineages. The donor cells migrated 
along white matter tracts in the injured spinal cord; how-
ever, the directed homing toward the lesion was not seen. 
The results of Nout et al. studies were consistent with the 
previous observation [114]. Rat fetal GRPs transplanted 
into allogeneic recipients 9  days after contusion SCI 
exhibited robust survival and integration into the host 
tissue and expressed markers for oligodendrocytes and 
astrocytes. Transplantation of GRPs has shown to have 
modest beneficial effects on some functional outcome 
measurements of spine cord injured rats.

Several studies revealed that human iPSC-OPCs 
injected into the cavity of spinal cord injured cell recipi-
ents improved neurological deficits in mice and rats fol-
lowing spinal cord contusion. Early intervention for SCI 
with iPSC-OPCs resulted in a significant increase in the 
number of myelinated axons and attenuated motor and 
sensory dysfunction in contused rats compared to con-
trol animals [3, 188].

The experimental studies with human OPC transplan-
tation as a potential therapeutic strategy in the chronic 
phase of SCI in rats did not show any locomotor recovery 
in graft recipients; however, hOPCs survived in the host 
and differentiated into oligodendrocytes [62, 122].

Human embryonic stem cell-derived oligodendrocyte 
progenitor cell (hESC-OPC) transplantation has been 
tested in several rodent models of spinal cord injuries. 
Most therapies were performed in cervical region contu-
sion injuries known as the frequent human traumatic SCI 
cases. Administration of hOPCs directly into the cervi-
cal spinal cord of nude adult rats one week after injury 
resulted in a significant reduction in parenchymal cavita-
tion at the injury site and increased the number of mye-
linated axons [90, 127]. In addition, nude rats subjected 
to cervical SCI and treated with hOPCs exhibited motor 
behavioral recovery observed after cell transplantation. 
It was associated with robust engraftment of donor cells 
within and around the injury site and promoting neurite 
outgrowth in graft recipients.

Previously, the positive effects of hESC-OPC transplan-
tation were also shown in immunocompetent adult rats 
subjected to acute SCI in the cervical model [140]. The 
spinal cord graft area of the hosts after cyclosporine A 
(CsA) treatment contained hESC-OPCs with their homo-
geneous distribution. The white matter of transplant 
recipient spinal cords comprised less demyelinated axons 

and more of properly-myelinated axons in contrast to 
the non-transplanted spinal cords. Moreover, the corre-
lation between the histological and functional outcomes 
in graft hosts was observed for the proximal forelimb 
range of motion. These studies suggest that hESC-OPCs 
injected into the injured spinal cord have beneficial 
effects such as neuroprotection, axonal regeneration, 
and the improvement of contusion-affected forelimb 
function. Similar results were found by Jin and cowork-
ers [59]. Human ESC-GRPs transplanted acutely into the 
spinal cord lesioned rats suppressed with cyclosporine A 
(CsA) modified the injury site and enhanced sensory and 
motor axonal growth in graft recipients.

Preclinical efficacy and safety data of a human embry-
onic cell-delivered oligodendrocyte progenitor cell 
therapy (LCTOPC1; previously known as AST-OPC1) 
supported a phase I/IIa clinical trial testing these cells 
in patients with subacute cervical spinal cord injury 
(NCT02302157). The study was designed as an open-
label, dose-escalation, multi-center clinical trial initiated 
in 2014 and completed in 2021. The intra-parenchymal 
injection of LCTOPC1 into the spinal cord at the site of 
injury between 21 and 42 days after the insult was safe, 
and at 1-year follow-up, 96% of patients (21/22) recov-
ered one or more levels of neurological function on at 
least one side of the body [30].

To conclude, accumulating evidence suggests that 
exogenous GRPs are promising candidates for transplan-
tation therapy and repair of CNS functions in various 
demyelinating diseases such as leukodystrophies, neuro-
degenerative diseases, and brain or spinal cord injuries. 
Furthermore, it was shown that grafted glial progenitor 
cells survive in the neural tissue, differentiate into mature 
cells, promote myelination in the brain and spinal cord 
regions, and improve motor and sensory functions in 
CNS disorders. In this consent, GRPs that fulfill diverse 
beneficial requirements to treat distinct neurological dis-
eases could be applied in a clinical setting (Table 1).

Other neurological disorders
While we have detailed above an extensive research on 
GRPs on several disorders, this approach can have wider 
ramifications. While Parkinson’s disease is strongly asso-
ciated with neuronal cell death, surprisingly many genes 
linked to this pathology are expressed extensively in glial 
cells [60]. It calls for re-visiting pathology, and pointing to 
glia replacement as a foreseeable approach to therapy of 
Parkinson’s disease. We have also a similar situation with 
Alzheimer’s disease [10]. Chemobrain is another pathol-
ogy in which glia is a victim but might become also a 
cure [166]. Glia are also considered villains of brain aging 
and their replacement might also contribute to rejuvena-
tion [136, 185]. It is likely that virtually any brain disease 
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might be linked with glia, which makes glia replacement 
or modulation a viable strategy to have a positive impact 
far beyond a few diseases in which GRPs are currently 
extensively investigated.

Genetic and pharmacological enhancement 
of GRPs’ regenerative potential
As proved in the previous paragraphs, GRPs have the 
potential to show beneficial effects in the treatment of 
various CNS disorders, starting from demyelinating 
to neurodegenerative diseases. Unfortunately, in most 
cases of GRP transplantation, the outcome was only par-
tial improvement. Therefore, some scientists began to 
develop modification methods to improve the therapeu-
tic properties of transplanted cells (Table 1).

Two major problems related to cell therapy that require 
solving are the inadequate cell delivery methods and 
insufficient homing of grafted cells in the host’s niche. 
The promising cell delivery method into the brain is the 
intra-arterial (IA) route [5]. However, the size and the 
number of transplanted cells might be the limiting fac-
tors. Recently, Walczak’s group performed an interest-
ing approach where mGRPs were transfected with very 
late antigen 4 (VLA-4) to increase the number of infused 
cells capable of entering the brain parenchyma after IA 
delivery. VLA-4 and its ligand-vascular cell adhesion 
molecule 1 (VCAM-1) are responsible for leukocyte traf-
ficking through the vessels. It seems that transfection of 
GRPs with VLA-4 and its following overexpression leads 
to increased binding to VCAM-1 and migration of the 
GRPs in vitro and in vivo [55].

The other report investigating GRPs’ therapeutic role 
in spinal cord recovery attempted to overexpress gluta-
mate transporter 1 (GLT1) in GRP-derived astrocytes. 
As a consequence of SCI, respiratory failure occurs, an 
effect of secondary degeneration leading to peripheral 
motoneuron (PMN) loss that innervates the diaphragm. 
During SCI, secondary injury results from excitotoxicity 
caused by glutamate clearance failure. In large part, the 
astrocytes are responsible for glutamate homeostasis. 
To diminish the cytotoxic effect occurring after SCI, Li 
and co-workers transplanted rat GRPs that overexpress 
GLT1, specifically in the astrocyte population. Such an 
approach resulted in the reduction of the lesion area and 
the preservation of diaphragm innervation and function-
ing. Nevertheless, there was no improvement in the fore-
limb grip strength in transplanted animals [80].

Positive results in SCI treatment were obtained after 
co-transplantation of Schwann cells with rat OPCs that 
overexpressed myelin gene regulatory factor (MRF). 
MRF is implicated in the maturation of oligodendrocytes 
and myelination of CNS. It must be stressed that thera-
peutic effects of increased myelination, reduced lesion, 

and recovery of some of the locomotor functions were 
obtained only if MRF overexpressing OPCs were co-
transplanted with SCs. It seems that MRF stimulated rat 
OPCs into the differentiation towards myelinating oligo-
dendrocytes in  vivo. However, the MRF-overexpressing 
OPCs transplanted alone did not bring noticeable results 
[178].

Some genetic regulators like short non-coding RNA 
like miRNAs are also considered when it comes to the 
genetic manipulation of OPCs. miR-219 is responsible 
for the regulation of oligodendrocyte development. The 
overexpression of miR-219 in human OPCs transplanted 
in the SCI model resulted in reduced cavity size and 
improved functional recovery in rats. The outcome sug-
gests that the better therapeutic result of OPC modifica-
tion is somewhat related to the orientation of OPCs into 
mature, myelinating phenotype rather than the promo-
tion of the survival of grafted cells [107].

Similarly, the overexpression of PDGF-AA by OPC 
brought beneficial results in SCI treatment. PDGF-AA is 
known to impact OPC proliferation and differentiation 
into oligodendrocytes. Yao and co-workers used spinal 
cord transplantation of modified rat OPCs for the treat-
ment of SCI rats. It was proved that rats transplanted 
with OPCs overexpressing PDGF-AA had improved 
locomotor functions and diminished lesion volume com-
pared to rats transplanted with non-modified OPCs. The 
positive outcome resulted from increased proliferation, 
improved survival, and differentiation of transplanted 
cells, followed by greater myelination [186].

A slightly different approach was undertaken to 
improve the survival of transplanted GRPs in the asphyxia 
mice model. Mouse GRPs were either pre-treated or co-
transplanted with hydroxyl polyamidoamine dendrimer 
(PAMAM) conjugated with N-acetyl cysteine (NAC). 
NAC was previously proven to have anti-inflammatory 
and anti-oxidative functions. Both NAC dendrimer pre-
conditioning of GRPs and transplantation of GRPs with 
NAC-dendrimers injected intraperitoneally improved 
migration and survival of grafted cells [108].

To summarize, GRP modification brought some posi-
tive results in terms of increasing the therapeutic proper-
ties of cells (Table  1). Nevertheless, there are still some 
shortcomings in the general outcome and more investi-
gation needs to be performed before transferring GRP 
research into the clinic.

As demonstrated in Table  1, numerous experimental 
studies using GRPs/OPCs in cellular therapies for glia 
regeneration in different models of neurological dis-
eases have been performed. In terms of cell source, the 
striking majority of these studies utilized cells derived 
from fetal sources or differentiated ESCs. Although such 
approaches are useful in preclinical settings, they carry 
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a significant ethical burden, which hinders their effec-
tive clinical translation. Future cell therapies will more 
likely be based on reprogrammed autologous somatic 
cells. This trend is already reflected in the total number 
of clinical trials based on iPSCs (74.8%) vs. those based 
on ESCs (25.2%) [23]. As for the number of transplanted 
cells, the majority of the studies in Table  1 involved a 
pool in the range of 105–106 cells, depending on the dis-
ease model and/or host species. Such a number likely 
reflected the desired spatial distribution of exogenous 
cells after injection. Regarding the studied delivery routes 
for transplanted cells, most of them included intracer-
ebral/intracerebroventricular and intraspinal route. This 
allowed to overcome the BBB hence reaching the CNS 
directly, yet is not necessarily the most feasible delivery 
route in a clinical setting due to extreme invasiveness of 
the procedure. Therefore, some preclinical studies were 
also based on minimally invasive, systemic administra-
tion routes. These included the intravenous route, which 
unfortunately might result in a pulmonary embolism, 
limiting the effectiveness of the treatment. An interest-
ing alternative for a systemic route is intraarterial admin-
istration, allowing the delivery of a sufficient number of 
therapeutic cells with minimal invasiveness and a rela-
tively simple protocol

Consideration of clinical translation of GRP 
research
GRPs appear as magic but are still unfulfilled bullets. 
Once the rescue of the lifespan of mice suffering from 
leukoencephalopathy has been very inspiring [174]. Q 
Therapeutics made an effort to commercialize and trans-
late of GRP-based therapeutics into a clinic. However, 
after many years of research, we still do not have any 
GRP-based clinical product. Many ethical, economic, 
and scientific factors contribute to this situation. Very 
robust Q Cells were procured from fetuses. Indeed, it 
was an excellent cell source for small animal research, 
but it ran into many clinical roadblocks. In its heyday 
and readiness for clinical translation, the changes in the 
political arena in the US, with a subsequent ban on elec-
tive abortions, contributed to the unfavorable climate 
surrounding cells of fetal origin. It might have translated 
to dampening investors’ enthusiasm, dramatically slow-
ing research in this arena. The limited scalability of the 
fetal cell-based solution may be another roadblock from 
an investment perspective. There are also scientific rea-
sons for less-than-expected efforts for clinical transla-
tion of GRP research. The most enthusiastic results were 
demonstrated after transplanting human cells to a rela-
tively tiny mouse brain. At that time, the other company, 
Stem Cells, Inc., ran a clinical study on Pelizeaus-Merz-
bacher disease. While their proprietary cells were slightly 

different and likely earlier in the development, as they 
were called neural stem cells, they shared many charac-
teristics with GRPs, including the capability of myelina-
tion. Unfortunately, this study was rather disappointing. 
Unlike the mouse study, which under MRI revealed wide-
spread re-myelination of the dysmyelinated brain, the 
imaging studies showed potential re-myelination in a 
very limited area near the needle track [43], and the 
company was bankrupted, ultimately. A closer look into 
the images suggested that this re-myelination area may 
resemble the mouse brain’s size, which is insufficient to 
make the difference in the human brain, which is roughly 
a thousand times bigger. Moreover, it was demonstrated 
that mouse GRPs are characterized by much more lim-
ited migration, which did not translate to any therapeutic 
effects in the same animal model of leukoencephalopa-
thy [88]. Recently, the hypothesis of migratory range 
translating to the therapeutic benefit has been addition-
ally supported by transplantation of canine GRPs, which 
demonstrated some benefit in a mouse model, so they 
were more potent than transplantation of mouse GRPs 
but less than human GRPs [147]. It should also be noted 
that Pelizeaus-Merzbacher disease is sporadic, so it is dif-
ficult to build a business case on it.

Therefore, there was a search for more frequent CNS 
diseases that could benefit from GRPs. ALS is undoubt-
edly one of these diseases, and some studies revealed the 
beneficial effects of GRPs and no impact of ALS on their 
gene expression profile [77]. Later on, other investiga-
tions pointed to a hostile host microenvironment limiting 
the survival of transplanted GRPs [145, 148]. Therefore, 
the limited migratory potential of GRPs has not been 
solved yet, and in other diseases than dysmyelination, 
such as ALS, the unfavorable microenvironment might 
be an additional roadblock. The ClinicalTrials.gov data-
base revealed only two relevant clinical trials sponsored 
by Q Therapeutics for ALS and transverse myelitis, which 
were expected to start in 2021 but are still not recruiting 
patients. The website of Goldman’s lab reports launching 
the consortium composed of the three upstate New York 
schools for the clinical application of a slightly more dif-
ferentiated cell population, namely oligodendrocyte pre-
cursors (https://​www.​urmc.​roche​ster.​edu/​labs/​goldm​an/​
proje​cts/​glial-​proge​nitor-​based-​cell-​thera​py-​in-​myelin-​
dise.​aspx; last accessed on October 27, 2022). Still, it has 
not been reflected in a record at ClinicalTrials.gov.

In summary, even if human GRPs proved miraculous 
in reversing a dismal prognosis in mice with leukoen-
cephalopathy, additional steps are needed to enhance 
the migratory range of transplanted GRPs and shield 
them from the toxic host microenvironment. We also 
need to realize that we are witnessing massive pro-
gress in traditional gene therapies, such as AAV-based 

https://www.urmc.rochester.edu/labs/goldman/projects/glial-progenitor-based-cell-therapy-in-myelin-dise.aspx
https://www.urmc.rochester.edu/labs/goldman/projects/glial-progenitor-based-cell-therapy-in-myelin-dise.aspx
https://www.urmc.rochester.edu/labs/goldman/projects/glial-progenitor-based-cell-therapy-in-myelin-dise.aspx
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solutions for spinal muscular atrophy (SMA) [68], and 
CRISPR-based therapeutic [73], which have provided 
encouraging results in patients but so far have only been 
tried outside the CNS. Conversely, GRPs may have a 
widespread rejuvenating potential in the CNS. Further-
more, currently, we are witnessing enormous progress in 
ex vivo gene therapies. External stimuli activatable CAR 
T cells are just one example. Notably, these novel genetic 
approaches may open new technological boundaries, and 
can be readily used for GRP engineering to equip them 
with additional functions to empower them as therapeu-
tics and make them ready to address challenges of human 
CNS diseases [98].

Conclusions
As it was comprehensively described in this review, 
GRPs, or slightly more differentiated OPCs, have an 
enormous potential to treat at least some of the demy-
elinating and neurodegenerative diseases. In the areas 
where there is a need to demonstrate the protective, sta-
bilizing effect, GRPs might act as homeostasis regulators 
facilitating neuronal survival after injuries. On the other 
hand, the ability to differentiate into myelinating oligo-
dendrocytes makes them valuable candidates that could 
repair the damaged myelin sheaths of axons. However, 
there are many points that need to be addressed and 
some problems to be solved. First of all, re-myelination, 
if occurring, is mostly not as effective as de novo myelin 
formation; however, as it was shown, there is still much 
to be explored in this area. The other crucial aspect is the 
migration of transplanted cells at longer distances and 
the survival of the cells in the host environment that is 
not always hospitable. Therefore, GRPs transplantation in 
treating CNS diseases, even though it gives hope, is still a 
great field to explore.
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