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Abstract

Background: Various health benefits have been attributed to Er-Miao-San (EMS), a traditional Chinese herbal
formulation that contains equal amounts of cortex phellodendri (Phellodendron amurense Ruprecht) and rhizoma
atractylodis (Atractylodes lancea D.C). However, its effect on the anti-inflammatory activity in human dermal fibroblasts
(HDFs) and the mechanism underlying this effect are unknown.

Results: This study investigated the effects of EMS on TNF-a-induced MMP-1 expression in HDFs. Our data show that
EMS inhibited TNF-a-induced MMP-T expression in a concentration-dependent manner. Interestingly, EMS maintained
IkB content without inhibiting the phosphorylation of MAPKs, which are well-established upstream kinases of NF-kB.
Moreover, EMS reduced the level of nuclear p65 protein in HDFs. Luciferase assay revealed that EMS inhibits the
transcriptional activity of NF-kB by stabilizing IkB. Our results show that EMS exerts its anti-inflammatory effect by
inhibiting NF-kB-regulated genes such as /-1 and IL-8. Moreover, EMS effectively inhibited TNF-a-induced expression
of MMP-1 via the NF-kB pathway.

Conclusions: Taken together, our data suggest that EMS could potentially be used as an anti-inflammatory and

anti-aging treatment.
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Background
Skin aging can be divided into two types, namely intrin-
sic aging, which is caused by the natural consequences
of physical change, and extrinsic aging, which is caused
by exposure to environmental factors such as ultraviolet
(UV) rays and pollutions [1]. Oxidative stress due to
UVB, an extrinsic aging factor, causes DNA damage, and
leads to human dermal fibroblast (HDF) senescence [2].
In addition, inflammation of skin cells caused by various
environmental factors is also known to be a representa-
tive factor that induces skin aging [3].

Wrinkle formation is the most representative charac-
teristic of skin aging, and is closely related to a reduction
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in skin elasticity and degeneration of the extracellular
matrix (ECM) [4]. The ECM consists of a mesh of fibrous
proteins, such as collagen, elastic fibers, and glycosamino-
glycans, which are generated by fibroblasts. These cells
synthesize procollagen type-1 (Col-1) and type-3 (Col-3)
in the dermis and secrete matrix metalloproteinase
(MMP), an enzyme that degrades nearly all ECM compo-
nents, including collagen. Wrinkle formation is caused by
the secretion of higher levels of MMP-1 and reduction of
procollagen synthesis in HDFs [5]. Several compounds in-
cluding cordycepin and brazilin have recently been sug-
gested as possible anti-aging agents through suppressing
the secretion of MMP-1 and MMP-3 in HDFs [6,7].
NF-«B is one of transcription factors and forms homo-
and heterodimer complexes with Rel family proteins
such as RelA (p65), RelB, cRel, p50, and p52 [8]. The
transcriptional activity of NF-«B is mainly regulated by
its intracellular localization, which is primarily con-
trolled by inhibitor of kB (IkB) [8]. IkB can dimer with
NF-«B, which induces cytoplasmic retention of NF-kB
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[9]. Upon lipopolysaccharide (LPS) or cytokine stimulation,
IkB kinase (IKK) is activated and phosphorylates IkB, and
then phosphorylated IkB underwent polyubiquitination-
mediated proteasomal degradation [10]. Following the
degradation of IkB, NF-kB translocates to the nucleus
and induces transcription of various inflammatory
genes, including interleukin (IL)-1f and IL-8 [11,12].
Accumulating studies have also shown that NF-«B reg-
ulates skin aging by regulating the expression level of
MMP-1 in dermal fibroblasts [13,14]. Interestingly, it
was reported that suppression of NF-kB activation reduces
MMP-1 expression in HDFs and inhibits skin photoaging
[15]. Furthermore, inflammation-induced activation of
NE-«B causes deterioration of dermal tissue by promoting
the expression of MMP-1, which exerts degradation of
dermal type I collagen [16].

Er-Miao-San (EMS) is a compound commonly found in
traditional Chinese medicine (TCM) that consists of equal
amounts of Cortex Phellodendri (CP) and Rhizoma Atrac-
tylodis (RA). The major component of CP, berberine,
promotes the apoptosis of cancer cells by regulating
caspase-3 [17]. In 3 T3-L1 adipose cells, free fatty acid-
induced insulin resistance was recovered by berberine
through activation of inhibitor of kB kinase-f (IKK-p)
[18]. Moreover, berberine prevents receptor activator of
nuclear factor kappa-B ligand (RANKL)-induced NF-xB
activation by blocking phosphorylation of inhibitor of kKBa
(IxBa) [19]. RA extract has been known to inhibit the ac-
tivity of cyclooxygenase-1 (COX-1) [20], 15-lipoxygenase
[21], and thromboxane [22], as well as block the expres-
sion of interleukin (IL)-13/IL-6 [23] and IL-2 [24]. Studies
have shown that RA also inhibits NF-kB [25], and that
EMS exerts beneficial effects on prevention of cancer
progression, inflammation, atherosclerosis, and arthritis
[26,27]. However, little is known about the biological ef-
fects of EMS on skin aging.

TNF-alpha (TNF-a) is one of the major inflammatory
cytokines [28]. It was reported that TNF-a induces MMPI
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expression and suppresses collagen synthesis in HDFs
[28]. After TNF-a stimulation in cells, NF-«B is activated
and acted as a transcription factor for MMP1 expression
[8,13]. Besides IkB, mitogen-activated protein kinases
(MAPKs) are important signaling molecules that affect
NF-kB activation [29], as evidenced by the lack of NF-kB
transactivation following MAPK inhibition [29]. Here, we
demonstrated that treatment with EMS inhibits TNF-a-
induced MMP-1 expression through suppressing NF-kB
nuclear localization in HDFs. Also, we observed that
EMS-mediated NF-kB inhibition was not dependent on
MAPK signaling pathways in HDFs.

Results

Effect of EMS on cell viability

We first investigated whether the treatments of EMS, CP
and RA on human skin dermal fibroblasts will induce
cytotoxic or non-cytotoxic properties, and what are the
non-cytotoxic concentration ranges of EMS, CP and RA
on human skin dermal fibroblasts before further experi-
ments that investigate the EMS-induced protection effect
on TNF-a-induced MMP-1 expression. Therefore, we set
the experimental conditions as followed; the treatment
concentrations is 0 — 1000 pg/ml, and the treatment time
is 24 h. To examine the cytotoxicity of EMS, CP, and RA,
HDFs were treated with various concentrations (0—
1000 pg/ml) of the reagents for 24 h, and the WST-1 assay
was performed to evaluate cell viability. As shown in
Figure 1A and C, treatment with EMS and RA slightly
increased the cell viability of HDFs as the concentration
increased. Interestingly, treatment with less than 500 pg/
ml CP did not induce any significant cytotoxicity relative
to the control; however, the viability was decreased to
75.1% when HDF cells were treated with 1000 pg/ml CP,
respectively (Figure 1B). Therefore, we concluded that al-
though larger dose of CP (1000 pg/ml) show cytotoxicity
in HDFs, EMS, which contain equal amount of CP and
RA, is not cytotoxic reagent in HDFs, and the doses of
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Figure 1 The effect of EMS on cell viability in HDFs. Cell viability was determined by the WST-1 assay. HDFs were incubated with 62.5-1000 pg/ml
EMS (A), Cortex Phellodendri (CP) (B), or Rhizoma Atractylodis (RA) (C) for 24 h. The graph represents mean + S.D. of relative cell viability from three
independent experiments.
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250 and 500 pg/ml EMS, CP and RA were used in further
experiments.

Effect of EMS on TNF-a-induced expression of MMP-1 mRNA
We next investigated whether TNF-a-induced downregu-
lation of MMUPI expression could be regulated by treating
EMS in HDFs. HDFs were seeded and pretreated with 250
and 500 pg/ml EMS for 3 h, and then exposed to TNF-a
for 4 h. After TNF-a stimulation, cells were gathered and
the expression level of MAMPI was investigated using RT-
PCR with its specific primers. As shown in Figure 2A,
TNF-a increased the expression level of MMPI by 6.75 +
0.81 fold compared with non-treated control cells. How-
ever, 250 and 500 pg/ml EMS treatments before TNF-a
stimulation significantly inhibited the expression level of
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Figure 2 The effect of EMS on TNF-a-induced MMP-1 mRNA
expression in HDFs. HDFs were pre-treated with 250-500 pg/ml EMS
(A), 250 pg/ml CP and 250 pg/ml RA for 3 h (B), and subsequently
stimulated with 10 ng/ml TNF-a for 4 h. The level of MMP-T mRNA was
determined by gRT-PCR. Independent experiments were performed in
triplicate (*p < 0.05).
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MMPI by 4.26 + 0.37 and 2.26 + 0.21 fold, respectively, as
compared with non-treated control cells (Figure 2A). Of
note, the upregulated MMP1 expression induced by TNF-
a was largely downregulated to 33.57% in 1000 pg/ml
EMS pretreated HDFs as compared with TNF-a treated
cells. Furthermore, we investigated which component be-
tween CP and RA could regulate the TNF-a-induced
MMP1 expression. HDFs were seeded and pretreated with
250 pg/ml CP and RA for 3 h, and then exposed to TNE-
a for 4 h. As shown in Figure 2B, both CP and RA pre-
treatments significantly inhibited the TNEF-a-induced
MMPI upregulation in HDFs. Overall, we conclude
that EMS pretreatment significantly inhibits TNF-a-
induced MMP1 expression in HDFs.

Effect of EMS on IkB degradation and NF-kB transactivation
activity

We investigated whether EMS-mediated inhibition of
TNF-a-induced MMP1 expression is associated with
NE-«B activity in HDFs. First, we confirmed that TNF-a
stimulation decreased the protein level of IkB in HDFs
(Figure 3A, lane 1 and 3). Next, to investigate the effect
of EMS on TNF-a-induced IkB degradation, HDFs were
seeded and pretreated with 250 and 500 pug/ml EMS be-
fore TNF-a stimulation. As shown Figure 3A, pretreat-
ment with EMS rescued the decreased IkB protein
mediated by TNF-a stimulation in HDFs. Third, we also
found that the total and nuclear protein level of p65,
which is subunit of NF-kB [8], was increased by TNF-a
stimulation and the increased p65 protein was largely
decreased by EMS pretreated HDFs, indicating that
TNF-a-induced NF-kB nuclear translocation was inhib-
ited by EMS treatment in HDFs (Figure 3A). Lastly, we
further examined whether EMS-mediated inhibition of
TNF-a-induced p65 nuclear translocation is indeed re-
lated with transcriptional activity of NF-kB in HDFs.
Using NF-«B luciferase reporter NIH-3 T3 fibroblasts,
we investigated the NF-kB activity after EMS and TNF-a
treatment. As shown in Figure 3B, pretreatment with
EMS significantly decreased the upregulated luciferase
activity mediated by TNF-q, indicating that EMS inhibits
TNEF-a-induced NF-«B activation. Notably, TNF-«a only
stimulation increased the luciferase activity to 3.21 +
0.31 compared with non-treated control cells; however,
EMS pretreatment before TNF-a stimulation increased
the luciferase activity only to 2.16 £ 0.07 and 1.23 £ 0.19
fold compared with non-treated control, respectively
(Figure 3B). Therefore, we conclude that EMS inhibits
TNF-a-induced NF-kB activation and MMP1 expression
in HDFs.

NF-«B activates transcription of IL-18 and IL-8 by
binding to their promoters [11,12], leading to inflamma-
tion and degradation of the tissue matrix structure by
inducing the formation of inflammatory mediators such
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Figure 3 The effect of EMS on IkB degradation and NF-kB transactivation in TNF-a-induced HDFs. HDFs were pre-treated with 250-500 pg/mL
EMS for 3 h, and subsequently stimulated with 10 ng/mL TNF-a for 4 h. (A) IkB and p65 protein levels were analyzed by western blot. Nuclear p65
protein was analyzed using nuclear extracts. Lamin B was used as the loading control. The relative expression ratio of each band was calculated after
densitometric analysis using image J software and normalization to 3-actin or Lamin B signal. *p < 0.05 compared with control or TNF-o-treated group.
(B) NF-kB transactivation activity was determined by luciferase assay using NF-kB reporter NIH-3 T3 cells. (C) The level of /-7 mRNA was determined
by real-time gPCR. (D) The level of /[-8 mRNA expression was determined by real-time gPCR. Independent experiments were performed in
triplicate (*p < 0.05).

as COX-2, PGE2, and MMP [30]. Thus, we performed Discussion
qRT-PCR to examine the effect of EMS on IL-1p and  Skin is constantly in direct contact with the environment,
IL-8 expression. Our results indicate that the level of IL-  thereby inducing aging and skin damage [1]. Wrinkle for-
1B and IL-8 mRNA increased following TNF-a treat- mation, the most representative characteristic of skin
ment, but was decreased by EMS in a dose-dependent  aging, is caused by oxidative stress and inflammation
manner (Figure 3C and D). of skin cells. Thus, compounds that exhibit an anti-
inflammatory effect on skin cells have been suggested as
promising anti-aging agents [6,7]. In this study, we investi-
Effects of EMS on phosphorylation of MAPK pathway gated the inhibitory effect of EMS on inflammation-
To investigate the effect of EMS on the MAPK pathway, induced skin aging. Therefore, examination of the effect of
ERK, JNK, and p-38 phosphorylation were investigated = EMS on TNF-a-induced MMP-1 expression in HDFs in-
after treatment with EMS and TNF-a in HDFs. Immuno-  dicated that pre-treatment with EMS for 3 h decreased
blotting results showed that pretreatment with EMS did AMMP-I mRNA in a concentration-dependent manner
not altered the TNF-a-induced phosphorylation of ERK,  (Figure 2A). CP and RA treatment also decreased the ex-
JNK, and p-38 in HDFs (Figure 4). Therefore, these results  pression level of MMP-1 mRNA (Figure 2B), suggesting
showed that the intracellular mechanism of EMS-  that these active ingredients might synergistically inhibit
mediated inhibition of TNF-a-induced NF-kB activa- TNF-a-induced MAMP-1 expression.
tion and MMP-1 expression is independent of the The expression of MMP-1 in response to inflamma-
MAPK signaling cascade in HDFs. tion is regulated by the transcription factor NF-kB. In
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Figure 4 The effect of EMS on phosphorylation of MAPK in TNF-a-induced HDFs. The phosphorylation of ERK, p38, and JNK was analyzed
by western blot analysis. As controls, cells were treated with 10 uM PD98059 (an ERK inhibitor) (A), SB203580 (a p38 inhibitor) (B), or SP600125
(a JNK inhibitor) (C). (D) The relative expression ratio of each p-ERK, p-p38 and p-JNK was calculated after densitometric analysis using image J

software and normalization to each ERK, p38 and JNK signal. *p < 0.05 compared with non-treated control group.

HDFs, NF-kB activation is involved in regulating inflam-
mation through various intracellular signaling pathways,
including the MAPK pathway [30]. MAPKs constitute a
group of serine/threonine protein kinases that can be
subdivided into three subfamilies: p42/p44 ERK, JNK,
and p38 MAPK. MAPKs are activated by various extra-
cellular stimuli and induce the phosphorylation of key
signaling molecules associated with cell proliferation, in-
flammation, and apoptosis [31]. As shown in Figure 4A,
B and C, we found that EMS inhibited TNF-a-induced
activation of NF-«B. Also, we found that EMS inhibited
TNEF-a-induced MMP-1 expression. The phosphorylation
of MAPKSs, which is one of NF-kB activators, was also
known to be regulated by TNF-a stimulation [29]. How-
ever, we found that the increased levels of phosphorylation
of MAPKs by TNF-a stimulation were not changed in
EMS-treated cells. Those results indicated that EMS-
dependent MMP-1 expression is not related with the
phosphorylation of MAPKs, and EMS-dependent NF-kB
activation would not be dependent on the phosphoryl-
ation level of MAPKs. Therefore our results suggest that
EMS inhibits the NF-kB pathway independent of the
MAPK pathway.

Association of IkB with the NF-kB p65/p50 dimer plays
an important role in regulating the nuclear translocation

and target gene transcription by NF-kB. It is well estab-
lished that IkB degradation induces the nuclear trans-
location of p65 [8]. Thus, we assessed the level of IkB
in TNF-a-stimulated HDFs following EMS treatment.
Our data show that EMS treatment increased the level
of IkB and decreased nuclear p65 (Figure 3A). Nuclear
translocation of NF-kB due to IkB degradation is essen-
tial for activating NF-kB [8]. We further explored this
situation by assessing NF-«kB transactivation activity.
NF-«B transactivation was found to be increased by
TNF-a treatment, but significantly decreased by EMS
in a concentration-dependent manner (Figure 4B). In
addition, EMS inhibited the expression of IL-1 and IL-
8, which are regulated by NF-«B (Figure 4C,D). In con-
clusion, our results demonstrate that EMS exerts its
anti-inflammatory effect on skin by inhibiting the TNF-
a-induced expression of MAMP-1 in HDFs by blocking
NF-xB. EMS reduces inflammation by increasing the
level of IkB present in the cell, which reduces p65 nuclear
translocation and thus NF-«B transactivation. Also, several
reports have showed that inhibition of NF-kB activation
suppresses MMP-1 expression in several cells including
human dermal fibroblasts [32,33]. Our data showed that
EMS-dependent loss of MMP-1 expression was mediated
by EMS-mediated inhibitory effect on NF-«B activation.
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Therefore, our results also suggest that the effect of EMS-
dependent loss of MMP1 expression might be strength-
ened by treatment with NF-«B inhibitors.

Conclusions

In summary, we examined the inhibitory effect of EMS on
inflammation-induced NF-«B activation and MMP1 gen-
eration in HDFs. Our data suggest that EMS is a potential
anti-aging agent against inflammation-induced skin aging.

Methods

Herbal extraction and characterization

Dried CP and RA were obtained from the oriental phar-
macy in Kyung Hee Hospital of Oriental Medicine, Kyung
Hee University (Seoul, Korea). The each dried sample
(20 g) was added to 200 ml sterilized distilled water (DW)
to produce a 10% solution. For EMS, equal amounts
(10 g) of the dried CP and RA were added to 200 ml steril-
ized DW to be 10% solution. Those solutions were subse-
quently extracted for 24 h at 60°C and then filtered. After
the extraction and filtration, the extracts were subjected
to vacuum evaporating and freeze-drying. Finally, we ob-
tained 3.043 g of EMS, 2.548 g of CP, and 2.997 g of RA,
respectively. These powders were dissolved into the tissue
cell culture medium and used for experiments.

Cell culture and treatment

HDFs were obtained from Lonza (Basel, Switzerland) and
cultured in Dulbecco's Modified Eagle Medium (DMEM;
WELGENE Inc., Daegu, Korea) supplemented with 10%
fetal bovine serum, 100 U/ml of penicillin, and 100 pg/ml
of streptomycin. The cells were maintained at 37°C in a
5% CO, incubator. TNF-a was purchased from Sigma-
Aldrich (St. Louis, Mo, USA). Cells (1 x 10° or 3 x 10°)
were seeded in 60 pi or 6-well cell culture dishes and incu-
bated for overnight. After incubation, the cells were
treated with 10 ng/ml TNF-a for 4 h in a serum-free
media. All experiments handling human cells were carried
out in line with the Tenets of the Declaration of Helsinki.

Quantitative real-time PCR analysis

c¢DNAs were synthesized from total RNA using M-MLV
reverse transcriptase (Enzynomics, Seoul, Korea) accord-
ing to the manufacturer’s protocol. The forward and re-
verse primers for human MMP-1 were 5 -TCTGAC
GTTGATCCCAGAGAGCAG-3" and 5'-CAGGGTGAC
ACCAGTGACTGCAC-3’, respectively. The forward and
reverse primers for human pS-actin were 5-GGATT
CCTATGTGGGCGACGA-3" and 5'-CGCTCGGTGAG
GATCTTCATG-3’, respectively. The forward and reverse
primers for human IL-I were 5'-ACAGATGAAGTG
CTCCTTCCA-3" and 5'-GTCGGAGATTCGTAGCTGG
AT-3’, respectively. Also the forward and reverse primers
for human IL-8 were 5'-ATGACTTCCAAGCTGGCC
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GTGGCT-3" and 5'- TCTCAGCCCTCTTCAAAAACT
TCTC-3', respectively. PCR was performed using the
HOT FIREPol EvaGreen PCR Mix Plus (Solis BioDyne,
Estonia) with Line gene K software (Bioer Technology
Co., Ltd,, Hangzhou, China). The Cr-value for MMP-1,
IL-18 and IL-8 were normalized to S-actin. The 2744
method was used to calculate relative expression level of
MMP-1, IL-1f5 and IL-8. Data were presented as mean +
S.D. (n =9; three independent experiments).

Cell viability assay

Cell viability was assessed using the WST-1 assay ac-
cording to the manufacturer’s instructions (Itsbio, Seoul,
Korea). The results are represented graphically as the
measured cell viability ratio normalized to the control.

Western blotting

Cellular proteins was extracted by lysis buffer (50 mM
Tris—HCI, pH 8.0, 150 mM NaCl, 1% NP-40, 0.1% SDS,
and 0.5% sodium deoxycholate) and EDTA-free protease
and phosphatase inhibitor cocktail (Roche, Switzerland).
Equal amounts of protein samples were separated by
10% sodium dodecyl sulfate (SDS) polyacrylamide gel
electrophoresis and then transferred onto nitrocellulose
membrane (Whatman Protan BA83, GE Healthcare Life
Science, Freiburg, Germany). After blocking with 5%
skim milk for 1 h at room temperature, the membranes
were incubated first with primary antibody at 4°C over-
night and subsequently with peroxidase-conjugated sec-
ondary antibody at room temperature for 1 h. The protein
bands were detected using enhanced chemiluminescence
reagents. Primary antibody specific for MMP1 NF-«kB-p65,
IxB and Lamin B were purchased from Santa Cruz Bio-
technology (Santa Cruz, CA, USA). Anti-B-actin antibody
was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Anti-p38, p38, pERK, ERK, pJNK and JNK were pur-
chased from Cell Signaling Technology (Danvers, MA,
USA).

Preparation of nuclear protein extracts

Cells were gently resuspended in 500 pl of buffer A
(10 mM HEPES, pH 7.5, 1.5 mM MgCl,, 10 mM KCl,
0.5 mM DTT, and 0.05% NP-40) and then incubated for
20 min on ice. The cells were centrifuged for 5 min at
3,000 x g at 4°C. Then, 25 pl of buffer B (1% Triton X-
100, 300 mM NaCl, 5 mM HEPES, pH 7.5, 1.5 mM
MgCl,, 0.2 mM EDTA, 0.5 mM DTT, and 26% glycerol)
was added, and the samples were mixed prior to centri-
fugation for 20 min at 12,000 x g at 4°C. The super-
natant (nuclear protein extract) was collected and stored
at -80°C until use.
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NF-kB transactivation activity assay

NF-«B-luciferase reporter stable NIH-3 T3 cell line, which
was stably transfected with the NF-«kB-luciferase reporter
vector (pNF-kB-luc; Affymatrix-Panomics, Santa Clara,
CA, USA), was purchased from Affymatrix-Panomics.
pNF-kB-luc was designed to measure the transcriptional
activity of NF-«B. Six copies of NF-kB binding sequences
(5'-GGGAATTTCCGGGAATTTCCGGGAATTTCCGG-
GAATTTCCGGGAATTTCCGGGAATTTCC-3')  were
subcloned into the upstream region of luciferase cDNA.
The NIH-3 T3/NF-kB-luc cell line was obtained by co-
transfection of pNF-kB-luc (Affymatrix-Panomics) and
pHyg into NIH-3 T3 cells, followed by hygromycin selec-
tion. To test NF-kB activity, approximately 1 x 10°> NF-«B
reporter NIH-3 T3 stable cells were seeded onto 60-mm
culture dishes and cultured for 24 h. Cells were then lysed
by adding Passive Lysis Buffer (Promega, Madison, W1,
USA) and incubating for 30 min on ice. After centrifuga-
tion for 30 min at 12,000 x g at 4°C, the supernatant was
collected. The cell lysate was treated with luciferin (Pro-
mega) and its luminescence was measured using a Veritas
Luminometer (Turner Designs, Sunnyvale, CA, USA). Re-
sults shown are the averages of three independent
experiments.

Statistical analysis

A result of three observations per group was subjected
to a statistical analysis. Data are presented as mean * the
standard deviation (S.D.). Statistical analysis was per-
formed using two-tailed Student’s ¢-test analysis. P < 0.05
was considered significant.
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